BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36822264)

  • 1. Delta.EPI: a probabilistic voting-based enhancer-promoter interaction prediction platform.
    Zhang Y; Wang H; Liu J; Li J; Zhang Q; Tang B; Zhang Z
    J Genet Genomics; 2023 Jul; 50(7):519-527. PubMed ID: 36822264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism.
    Ni Y; Fan L; Wang M; Zhang N; Zuo Y; Liao M
    Interdiscip Sci; 2022 Sep; 14(3):786-794. PubMed ID: 35633468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EPIHC: Improving Enhancer-Promoter Interaction Prediction by Using Hybrid Features and Communicative Learning.
    Liu S; Xu X; Yang Z; Zhao X; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3435-3443. PubMed ID: 34473626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPIXplorer: A web server for prediction, analysis and visualization of enhancer-promoter interactions.
    Tang L; Zhong Z; Lin Y; Yang Y; Wang J; Martin JF; Li M
    Nucleic Acids Res; 2022 Jul; 50(W1):W290-W297. PubMed ID: 35639508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.
    Talukder A; Saadat S; Li X; Hu H
    Bioinformatics; 2019 Oct; 35(20):3877-3883. PubMed ID: 31410461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPI-Trans: an effective transformer-based deep learning model for enhancer promoter interaction prediction.
    Ahmed FS; Aly S; Liu X
    BMC Bioinformatics; 2024 Jun; 25(1):216. PubMed ID: 38890584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing large genomic contexts for accurately predicting enhancer-promoter interactions.
    Chen K; Zhao H; Yang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. McAN: a novel computational algorithm and platform for constructing and visualizing haplotype networks.
    Li L; Xu B; Tian D; Wang A; Zhu J; Li C; Li N; Zhao W; Shi L; Xue Y; Zhang Z; Bao Y; Zhao W; Song S
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37170752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta: a new web-based 3D genome visualization and analysis platform.
    Tang B; Li F; Li J; Zhao W; Zhang Z
    Bioinformatics; 2018 Apr; 34(8):1409-1410. PubMed ID: 29253110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CompMoby: comparative MobyDick for detection of cis-regulatory motifs.
    Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H
    BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions.
    Feng ZX; Li QZ
    Genomics; 2017 Oct; 109(5-6):341-352. PubMed ID: 28579514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction.
    Min X; Lu F; Li C
    Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
    Yang B; Liu F; Ren C; Ouyang Z; Xie Z; Bo X; Shu W
    Bioinformatics; 2017 Jul; 33(13):1930-1936. PubMed ID: 28334114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network.
    Jing F; Zhang SW; Zhang S
    BMC Bioinformatics; 2020 Nov; 21(1):507. PubMed ID: 33160328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning.
    Fan Y; Peng B
    BMC Bioinformatics; 2022 Jul; 23(1):272. PubMed ID: 35820811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAGER: classification analysis of gene expression regulation using multiple information sources.
    Ruan J; Zhang W
    BMC Bioinformatics; 2005 May; 6():114. PubMed ID: 15890068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OpenXGR: a web-server update for genomic summary data interpretation.
    Bao C; Wang S; Jiang L; Fang Z; Zou K; Lin J; Chen S; Fang H
    Nucleic Acids Res; 2023 Jul; 51(W1):W387-W396. PubMed ID: 37158276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction.
    Xu H; Zhang S; Yi X; Plewczynski D; Li MJ
    Comput Struct Biotechnol J; 2020; 18():558-570. PubMed ID: 32226593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.