These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 36822284)

  • 1. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based microfluidics for rapid diagnostics and drug delivery.
    Mao K; Min X; Zhang H; Zhang K; Cao H; Guo Y; Yang Z
    J Control Release; 2020 Jun; 322():187-199. PubMed ID: 32169536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The latest advances in high content screening in microfluidic devices.
    Liu W; Wang J; Qi H; Jiao Q; Wu L; Wang Y; Liang Q
    Expert Opin Drug Discov; 2023 Jul; 18(7):781-795. PubMed ID: 37219918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and
    Yoon S; Kilicarslan You D; Jeong U; Lee M; Kim E; Jeon TJ; Kim SM
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38275308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in microfluidics devices and its applications in personalized medicines.
    Maurya R; Gohil N; Bhattacharjee G; Khambhati K; Alzahrani KJ; Ramakrishna S; Chu DT; Singh V
    Prog Mol Biol Transl Sci; 2022; 186(1):191-201. PubMed ID: 35033284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degenerative disease-on-a-chip: Developing microfluidic models for rapid availability of newer therapies.
    Jahagirdar D; Bangde P; Jain R; Dandekar P
    Biotechnol J; 2021 Oct; 16(10):e2100154. PubMed ID: 34390543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction to microfluidics and their applications.
    Verma N; Prajapati P; Singh V; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):1-14. PubMed ID: 35033280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical Applications of Microfluidic Devices: A Review.
    Gharib G; Bütün İ; Muganlı Z; Kozalak G; Namlı İ; Sarraf SS; Ahmadi VE; Toyran E; van Wijnen AJ; Koşar A
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution.
    Kumar A; Parihar A; Panda U; Parihar DS
    ACS Appl Bio Mater; 2022 May; 5(5):2046-2068. PubMed ID: 35473316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development.
    Li Z; Hui J; Yang P; Mao H
    Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research.
    Regmi S; Poudel C; Adhikari R; Luo KQ
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Applications of Microfluidic Devices: A Review.
    Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of microfluidics devices for molecular biology applications.
    Maurya R; Bhattacharjee G; Gohil N; Lam NL; Alzahrani KJ; Singh V
    Prog Mol Biol Transl Sci; 2022; 187(1):1-8. PubMed ID: 35094772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.