BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 36823234)

  • 1. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy.
    Gu Y; Zhang Z; Ten Dijke P
    Cell Mol Immunol; 2023 Apr; 20(4):318-340. PubMed ID: 36823234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade.
    Choi Y; Seok SH; Yoon HY; Ryu JH; Kwon IC
    Adv Drug Deliv Rev; 2024 Jun; 209():115306. PubMed ID: 38626859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapy of targeting MDSCs in tumor microenvironment.
    Sui H; Dongye S; Liu X; Xu X; Wang L; Jin CQ; Yao M; Gong Z; Jiang D; Zhang K; Liu Y; Liu H; Jiang G; Su Y
    Front Immunol; 2022; 13():990463. PubMed ID: 36131911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast cancer resistance mechanisms: challenges to immunotherapy.
    Hanna A; Balko JM
    Breast Cancer Res Treat; 2021 Nov; 190(1):5-17. PubMed ID: 34322780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects.
    Li T; Liu T; Zhu W; Xie S; Zhao Z; Feng B; Guo H; Yang R
    Clin Med Insights Oncol; 2021; 15():11795549211035540. PubMed ID: 34408525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding cancer's camouflage: epithelial-mesenchymal plasticity in resistance to immune checkpoint blockade.
    Lotsberg ML; Rayford A; Thiery JP; Belleggia G; D'Mello Peters S; Lorens JB; Chouaib S; Terry S; Engelsen AST
    Cancer Drug Resist; 2020; 3(4):832-853. PubMed ID: 35582229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasively Deciphering the Immunosuppressive Tumor Microenvironment Using Galectin-1 PET to Inform Immunotherapy Responses.
    Liu N; Yang X; Gao C; Wang J; Zeng Y; Zhang L; Yin Q; Zhang T; Zhou H; Li K; Du J; Zhou S; Zhao X; Zhu H; Yang Z; Liu Z
    J Nucl Med; 2024 May; 65(5):728-734. PubMed ID: 38514084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Checkpoint Immunotherapy with Biomaterials.
    Liu L; Pan Y; Zhao C; Huang P; Chen X; Rao L
    ACS Nano; 2023 Feb; 17(4):3225-3258. PubMed ID: 36746639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment.
    Kirchhammer N; Trefny MP; Auf der Maur P; Läubli H; Zippelius A
    Sci Transl Med; 2022 Nov; 14(670):eabo3605. PubMed ID: 36350989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer stem cell-immune cell collusion in immunotherapy.
    Wang YY; Wang WD; Sun ZJ
    Int J Cancer; 2023 Aug; 153(4):694-708. PubMed ID: 36602290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment.
    Ruan R; Li L; Li X; Huang C; Zhang Z; Zhong H; Zeng S; Shi Q; Xia Y; Zeng Q; Wen Q; Chen J; Dai X; Xiong J; Xiang X; Lei W; Deng J
    Mol Cancer; 2023 Mar; 22(1):60. PubMed ID: 36966334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of immune checkpoint blockade in breast cancer.
    Pellegrino B; Tommasi C; Cursio OE; Musolino A; Migliori E; De Silva P; Senevirathne TH; Schena M; Scartozzi M; Farci D; Willard-Gallo K; Solinas C
    Semin Oncol; 2021 Jun; 48(3):208-225. PubMed ID: 34620502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal traits at the convergence of tumor-intrinsic and -extrinsic mechanisms of resistance to immune checkpoint blockers.
    Trono P; Sistigu A; Palermo B; Ciliberto G; Nisticò P
    Emerg Top Life Sci; 2017 Dec; 1(5):471-486. PubMed ID: 33525801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology.
    Liu Z; Xiang Y; Zheng Y; Kang X
    Front Immunol; 2022; 13():1027124. PubMed ID: 36341334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of immune checkpoint combinations with tumor-targeted small molecule drugs.
    Sceneay J; Sinclair C
    Emerg Top Life Sci; 2021 Nov; 5(5):675-680. PubMed ID: 34196724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.