These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36823466)
21. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Otanicar TP; Golden JS Environ Sci Technol; 2009 Aug; 43(15):6082-7. PubMed ID: 19731722 [TBL] [Abstract][Full Text] [Related]
22. Review on progress in concrete solar water collectors. Manokar AM; Karthick A Environ Sci Pollut Res Int; 2021 May; 28(18):22296-22309. PubMed ID: 33751345 [TBL] [Abstract][Full Text] [Related]
23. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator. Xu G; Chen W; Deng S; Zhang X; Zhao S Nanomaterials (Basel); 2015 Dec; 5(4):2131-2147. PubMed ID: 28347112 [TBL] [Abstract][Full Text] [Related]
24. Analytical modelling of food storage cooling with solar ammonia-water absorption system, powered by parabolic trough collectors. Method. Pop OG; Dobrovicescu A; Serban A; Ciocan M; Zaaoumi A; Hiris DP; Balan MC MethodsX; 2023; 10():102013. PubMed ID: 36691669 [TBL] [Abstract][Full Text] [Related]
25. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying. Orbegoso EM; Saavedra R; Marcelo D; La Madrid R J Environ Manage; 2017 Dec; 203(Pt 3):1080-1094. PubMed ID: 28728972 [TBL] [Abstract][Full Text] [Related]
26. Exergetic optimization of simple and finned solar air collectors for humid subtropical regions. Maharana D; Bhattacharya T; Kotecha P; Anandalakshmi R Environ Sci Pollut Res Int; 2022 Aug; 29(37):56473-56489. PubMed ID: 35347619 [TBL] [Abstract][Full Text] [Related]
27. Entropy generation analysis of different solar thermal systems. Rashidi S; Yang L; Khoosh-Ahang A; Jing D; Mahian O Environ Sci Pollut Res Int; 2020 Jun; 27(17):20699-20724. PubMed ID: 32285382 [TBL] [Abstract][Full Text] [Related]
28. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
29. Optimum techno-eco performance requisites for vacuum annulus tube collector-assisted double-slope solar desaltification unit integrated modified parabolic concentrator. Singh AK; Gautam S Environ Sci Pollut Res Int; 2022 May; 29(23):34379-34405. PubMed ID: 35038099 [TBL] [Abstract][Full Text] [Related]
30. A case study on optimizing industrial air conditioning with thermal solar energy in Egypt. Ebaid MA; Mohamed TA; Safwat H Heliyon; 2024 Aug; 10(15):e34774. PubMed ID: 39170523 [TBL] [Abstract][Full Text] [Related]
31. An active solar desalination system integrated with collective condenser heat pipe solar evacuated tube collector: a thermoeconomic analysis. Nema G; Krishnasamy K Environ Sci Pollut Res Int; 2024 Feb; 31(7):10273-10295. PubMed ID: 36645598 [TBL] [Abstract][Full Text] [Related]
32. Thermo-economic and environmental optimization using PSO of solar organic Rankine cycle with flat plate solar collector. Valencia Ochoa G; Ortiz EV; Forero JD Heliyon; 2023 Mar; 9(3):e13697. PubMed ID: 36915537 [TBL] [Abstract][Full Text] [Related]
33. Experimental thermal performance and enviroeconomic analysis of serpentine flow channeled flat plate solar water collector. Vengadesan E; Senthil R Environ Sci Pollut Res Int; 2022 Mar; 29(12):17241-17259. PubMed ID: 34661837 [TBL] [Abstract][Full Text] [Related]
34. Performance evaluation of external compound parabolic concentrator integrated with thermal storage tank for domestic solar refrigeration system. Christopher SS; Thakur AK; Hazra SK; Sharshir SW; Pandey AK; Rahman S; Singh P; Sunder LS; Raj AK; Dhivagar R; Sathyamurthy R Environ Sci Pollut Res Int; 2023 May; 30(22):62137-62150. PubMed ID: 36940023 [TBL] [Abstract][Full Text] [Related]
35. Enhancing water heater efficiency with aluminum and zinc-coated steel systems for energy solutions. Nurhilal O; Farizan NM; Rahman F; Setianto S Heliyon; 2024 Aug; 10(16):e35682. PubMed ID: 39224362 [TBL] [Abstract][Full Text] [Related]
36. A novel design for solar collector used for water heating application having nanofluid as working medium: CFD modeling and simulation. Kumar R; Kharub M; Sharma R; Hrisheekesha PN; Goel V; Bhattacharyya S; Tyagi VV; Varun Environ Sci Pollut Res Int; 2023 Jan; 30(2):3942-3952. PubMed ID: 35962163 [TBL] [Abstract][Full Text] [Related]
37. A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors. Aggarwal S; Kumar R; Lee D; Kumar S; Singh T Heliyon; 2023 Apr; 9(4):e15185. PubMed ID: 37089311 [TBL] [Abstract][Full Text] [Related]
38. Performance enhancement of a hybrid photovoltaic/thermal system using wire coils inside the cooling tube: numerical and experimental case. Zabihi Sheshpoli A; Jahanian O; Nikzadfar K Environ Sci Pollut Res Int; 2024 Mar; 31(12):18260-18280. PubMed ID: 37227636 [TBL] [Abstract][Full Text] [Related]
39. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant. Elmorsy L; Morosuk T; Tsatsaronis G Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428 [TBL] [Abstract][Full Text] [Related]
40. Experimental study of solar air heater performance with evacuated tubes connected in series and involving nano-copper oxide/paraffin wax as thermal storage enhancer. Elbrashy A; Aboutaleb F; El-Fakharany M; Essa FA Environ Sci Pollut Res Int; 2023 Jan; 30(2):4603-4616. PubMed ID: 35974272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]