BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36823665)

  • 1. Dynamics in the expression of programmed death ligand 1 and cluster of differentiation 163 in the tumor microenvironment of uterine cervical cancer: a single-center retrospective study.
    Miyata Y; Ogo E; Abe T; Hirata H; Tsuda N; Ushijima K; Kawahara A; Akiba J; Obara H; Kakuma T
    Radiat Oncol; 2023 Feb; 18(1):40. PubMed ID: 36823665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of CD68, CD163, and PD-L1 tumor expression during high-dose-rate and pulsed-dose-rate brachytherapy for cervical cancer.
    Berenguer Frances MA; Linares-Galiana I; Cañas Cortés R; Marín I Borrás S; Gutiérrez Miguélez C; Najjari D; Slocker A; Bellobí C; Santacana M; Pané Foix M; Alonso MH; Navarro-Martin A; Comas Antón S; Guedea F
    Brachytherapy; 2020; 19(1):51-59. PubMed ID: 31690516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Immune-Related Microenvironment Determines Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Blockade Efficacy in Patients With Advanced NSCLC.
    Shirasawa M; Yoshida T; Shimoda Y; Takayanagi D; Shiraishi K; Kubo T; Mitani S; Matsumoto Y; Masuda K; Shinno Y; Okuma Y; Goto Y; Horinouchi H; Ichikawa H; Kohno T; Yamamoto N; Matsumoto S; Goto K; Watanabe SI; Ohe Y; Motoi N
    J Thorac Oncol; 2021 Dec; 16(12):2078-2090. PubMed ID: 34419685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Dynamic Alternation of Local and Systemic Tumor Immune Microenvironment During Concurrent Chemoradiotherapy of Cervical Cancer: A Prospective Clinical Trial.
    Li R; Liu Y; Yin R; Yin L; Li K; Sun C; Zhou Z; Li P; Tong R; Xue J; Lu Y
    Int J Radiat Oncol Biol Phys; 2021 Aug; 110(5):1432-1441. PubMed ID: 33713744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive characterization of tumor microenvironment and m6A RNA methylation regulators and its effects on PD-L1 and immune infiltrates in cervical cancer.
    Ji H; Zhang JA; Liu H; Li K; Wang ZW; Zhu X
    Front Immunol; 2022; 13():976107. PubMed ID: 36091006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between radiotherapy-induced alteration of programmed death ligand 1 and survival in patients with uterine cervical cancer undergoing preoperative radiotherapy.
    Tsuchiya T; Someya M; Takada Y; Hasegawa T; Kitagawa M; Fukushima Y; Gocho T; Hori M; Nakata K; Hirohashi Y; Torigoe T; Saito T; Sakata KI
    Strahlenther Onkol; 2020 Aug; 196(8):725-735. PubMed ID: 31953603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status.
    Yang W; Lu YP; Yang YZ; Kang JR; Jin YD; Wang HW
    J Obstet Gynaecol Res; 2017 Oct; 43(10):1602-1612. PubMed ID: 28833798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malignant pleural mesothelioma immune microenvironment and checkpoint expression: correlation with clinical-pathological features and intratumor heterogeneity over time.
    Pasello G; Zago G; Lunardi F; Urso L; Kern I; Vlacic G; Grosso F; Mencoboni M; Ceresoli GL; Schiavon M; Pezzuto F; Pavan A; Vuljan SE; Del Bianco P; Conte P; Rea F; Calabrese F
    Ann Oncol; 2018 May; 29(5):1258-1265. PubMed ID: 29514216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and Quantitative Analysis of Tumor-Associated Macrophages: Intratumoral CD163-/PD-L1+ TAMs as a Marker of Favorable Clinical Outcomes in Triple-Negative Breast Cancer.
    Shinohara H; Kobayashi M; Hayashi K; Nogawa D; Asakawa A; Ohata Y; Kubota K; Takahashi H; Yamada M; Tokunaga M; Kinugasa Y; Oda G; Nakagawa T; Onishi I; Kinowaki Y; Kurata M; Ohashi K; Kitagawa M; Yamamoto K
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prognostic impact of programmed cell death ligand 1 and human leukocyte antigen class I in pancreatic cancer.
    Imai D; Yoshizumi T; Okano S; Uchiyama H; Ikegami T; Harimoto N; Itoh S; Soejima Y; Aishima S; Oda Y; Maehara Y
    Cancer Med; 2017 Jul; 6(7):1614-1626. PubMed ID: 28602029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive factors of the tumor immunological microenvironment for long-term follow-up in early stage breast cancer.
    Okabe M; Toh U; Iwakuma N; Saku S; Akashi M; Kimitsuki Y; Seki N; Kawahara A; Ogo E; Itoh K; Akagi Y
    Cancer Sci; 2017 Jan; 108(1):81-90. PubMed ID: 27801993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer.
    Zhang Y; Li J; Yang F; Zhang X; Ren X; Wei F
    J Leukoc Biol; 2022 Dec; 112(6):1591-1603. PubMed ID: 35501298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postoperative radiotherapy for laryngeal cancer. The prognostic role of programmed death-ligand 1: An immune microenvironment-based cluster analysis.
    Franz L; Alessandrini L; Ottaviano G; di Carlo R; Fasanaro E; Ramacciotti G; Contro G; Marioni G
    Pathol Res Pract; 2020 Sep; 216(9):153120. PubMed ID: 32825972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-induced Cervical Cancer and Potential for their Use in Blockade Therapy.
    Zhang L; Zhao Y; Tu Q; Xue X; Zhu X; Zhao KN
    Curr Med Chem; 2021; 28(5):893-909. PubMed ID: 32003657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-associated CD204
    Kawachi A; Yoshida H; Kitano S; Ino Y; Kato T; Hiraoka N
    Cancer Sci; 2018 Mar; 109(3):863-870. PubMed ID: 29274107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in the hypoxic immunosuppressive microenvironment of patients with neurofibromatosis type 2 schwannomas and sporadic schwannomas.
    Tamura R; Morimoto Y; Sato M; Kuranari Y; Oishi Y; Kosugi K; Yoshida K; Toda M
    J Neurooncol; 2020 Jan; 146(2):265-273. PubMed ID: 31897926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognostic impact of the tumor immune microenvironment in synovial sarcoma.
    Oike N; Kawashima H; Ogose A; Hotta T; Hatano H; Ariizumi T; Sasaki T; Yamagishi T; Umezu H; Endo N
    Cancer Sci; 2018 Oct; 109(10):3043-3054. PubMed ID: 30133055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer.
    Ojalvo LS; Thompson ED; Wang TL; Meeker AK; Shih IM; Fader AN; Cimino-Mathews A; Emens LA
    Hum Pathol; 2018 Apr; 74():135-147. PubMed ID: 29288043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prognostic Analysis of NSCLC Based on the Tumor-associated Macrophages, Tumor Neo-vessels and PD-L1 Expression in Tumor Microenvironment].
    Hang Q; Ying H; Cheng G; Yang S; Jin J; Chen Y; Chen Q; Jiang Y; Zhao Q; Fang M; Chen M; Lai X
    Zhongguo Fei Ai Za Zhi; 2020 Oct; 23(10):837-844. PubMed ID: 33070512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix.
    Heeren AM; Punt S; Bleeker MC; Gaarenstroom KN; van der Velden J; Kenter GG; de Gruijl TD; Jordanova ES
    Mod Pathol; 2016 Jul; 29(7):753-63. PubMed ID: 27056074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.