BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36823775)

  • 1. Relationship between blood-brain barrier changes and drug metabolism under high-altitude hypoxia: obstacle or opportunity for drug transport?
    Liu G; Bai X; Yang J; Duan Y; Zhu J; Xiangyang L
    Drug Metab Rev; 2023; 55(1-2):107-125. PubMed ID: 36823775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NB-3 expression in endothelial cells contributes to the maintenance of blood brain barrier integrity in a mouse high-altitude cerebral edema model.
    Zhou Y; Yan F; Han X; Huang X; Cheng X; Geng Y; Jiang X; Han Y; Zhao M; Zhu L
    Exp Neurol; 2022 Aug; 354():114116. PubMed ID: 35584741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut Microbiota as the Potential Mechanism to Mediate Drug Metabolism Under High-altitude Hypoxia.
    Bai X; Liu G; Yang J; Zhu J; Li X
    Curr Drug Metab; 2022; 23(1):8-20. PubMed ID: 35088664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influences and Mechanisms of High-altitude Hypoxia Exposure on Drug Metabolism.
    Zhao A; Li W; Wang R
    Curr Drug Metab; 2023; 24(3):152-161. PubMed ID: 36579391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability].
    Ding Y; Li W; Wang R; Zhang J
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2019 Dec; 48(6):668-673. PubMed ID: 31955542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Regulation Mechanisms of P-gp in the Blood-Brain Barrier in Hypoxia.
    Ding Y; Wang R; Zhang J; Zhao A; Lu H; Li W; Wang C; Yuan X
    Curr Pharm Des; 2019; 25(10):1041-1051. PubMed ID: 31187705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What role does the blood brain barrier play in acute mountain sickness?
    Baneke A
    Travel Med Infect Dis; 2010 Jul; 8(4):257-62. PubMed ID: 20952272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New strategy for rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments.
    Duo D; Duan Y; Zhu J; Bai X; Yang J; Liu G; Wang Q; Li X
    Drug Metab Rev; 2023 Nov; 55(4):388-404. PubMed ID: 37606301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers.
    Ozgür B; Helms HCC; Tornabene E; Brodin B
    Fluids Barriers CNS; 2022 Jan; 19(1):1. PubMed ID: 34983574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors.
    Xu D; Huang S; Wang H; Xie W
    Drug Metab Rev; 2018 Nov; 50(4):407-414. PubMed ID: 30501435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Correlation and influences of inflammatory mediators on permeability of the blood-brain barrier at high altitude exposure].
    Zhou QQ; Wang J; Wang YL; Li AD; Cheng L
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2007 Aug; 23(3):281-5. PubMed ID: 21162264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats.
    Zhang J; Zhang M; Zhang J; Wang R
    Eur J Pharm Sci; 2020 Oct; 153():105490. PubMed ID: 32721527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioactive gypenoside (GP-14) alleviates neuroinflammation and blood brain barrier (BBB) disruption by inhibiting the NF-κB signaling pathway in a mouse high-altitude cerebral edema (HACE) model.
    Geng Y; Yang J; Cheng X; Han Y; Yan F; Wang C; Jiang X; Meng X; Fan M; Zhao M; Zhu L
    Int Immunopharmacol; 2022 Jun; 107():108675. PubMed ID: 35299003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema.
    Xue Y; Wang X; Wan B; Wang D; Li M; Cheng K; Luo Q; Wang D; Lu Y; Zhu L
    Cell Commun Signal; 2022 Oct; 20(1):160. PubMed ID: 36253854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocarboxylate transporter-dependent mechanism is involved in the adaptability of the body to exercise-induced fatigue under high-altitude hypoxia environment.
    Gao C; Yang B; Li Y; Pei W
    Brain Res Bull; 2023 Apr; 195():78-85. PubMed ID: 36804772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies.
    Park TE; Mustafaoglu N; Herland A; Hasselkus R; Mannix R; FitzGerald EA; Prantil-Baun R; Watters A; Henry O; Benz M; Sanchez H; McCrea HJ; Goumnerova LC; Song HW; Palecek SP; Shusta E; Ingber DE
    Nat Commun; 2019 Jun; 10(1):2621. PubMed ID: 31197168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The blood-brain barrier in hypoxia.
    Lataste X
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S45-7. PubMed ID: 1483788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Regulation of the Response of Brain Pericytes to Hypoxia.
    Carlsson R; Enström A; Paul G
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-exposure to the hypobaric hypoxic brain injury of high altitude: plasma S100B levels and the possible effect of acclimatisation on blood-brain barrier dysfunction.
    Winter CD; Whyte T; Cardinal J; Kenny R; Ballard E
    Neurol Sci; 2016 Apr; 37(4):533-9. PubMed ID: 26924650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
    Bailey DM; Taudorf S; Berg RM; Lundby C; McEneny J; Young IS; Evans KA; James PE; Shore A; Hullin DA; McCord JM; Pedersen BK; Möller K
    Am J Physiol Regul Integr Comp Physiol; 2009 Nov; 297(5):R1283-92. PubMed ID: 19726713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.