These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36823816)

  • 1. General mathematical model for the period chirp in interference lithography.
    Bienert F; Graf T; Ahmed MA
    Opt Express; 2023 Feb; 31(4):5334-5346. PubMed ID: 36823816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive theoretical analysis of the period chirp in laser interference lithography.
    Bienert F; Graf T; Ahmed MA
    Appl Opt; 2022 Mar; 61(9):2313-2326. PubMed ID: 35333249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple spatially resolved period measurement of chirped pulse compression gratings.
    Bienert F; Röcker C; Graf T; Ahmed MA
    Opt Express; 2023 Jun; 31(12):19392-19403. PubMed ID: 37381355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography.
    Nagaraj Rao RR; Bienert F; Moeller M; Bashir D; Hamri A; Celle F; Gamet E; Ahmed MA; Jourlin Y
    Opt Express; 2023 Jan; 31(1):371-380. PubMed ID: 36606973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate measurement and adjustment method for interference fringe direction in a scanning beam interference lithography system.
    Li Y; Jiang S; Chen X; Liu Z; Wang W; Song Y; Bayanheshig
    Opt Express; 2023 Aug; 31(17):28145-28160. PubMed ID: 37710876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system.
    Chen X; Jiang S; Li Y; Jiang Y; Wang W; Bayanheshig
    Opt Express; 2022 Oct; 30(22):40842-40853. PubMed ID: 36299010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for exposure dose monitoring and control in scanning beam interference lithography.
    Song Y; Liu Y; Jiang S; Zhu Y; Zhang L; Liu Z
    Appl Opt; 2021 Apr; 60(10):2767-2774. PubMed ID: 33798150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending of Lloyd's mirror to eliminate the period chirp in the fabrication of diffraction gratings.
    Bienert F; Röcker C; Graf T; Ahmed MA
    Opt Express; 2024 May; 32(10):18430-18440. PubMed ID: 38858998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.
    Li D; Lv X; Bowlan P; Du R; Zeng S; Luo Q
    Opt Express; 2009 Sep; 17(19):17070-81. PubMed ID: 19770925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations.
    Chen CG; Konkola PT; Ferrera J; Heilmann RK; Schattenburg ML
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):404-12. PubMed ID: 11822605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active control technology of a diffraction grating wavefront by scanning beam interference lithography.
    Liu Z; Yang H; Li Y; Jiang S; Wang W; Song Y; Bayanheshig ; Li W
    Opt Express; 2021 Nov; 29(23):37066-37074. PubMed ID: 34808785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of a multi-vortex beam: far-field diffraction of a Gaussian beam from a multi-fork phase grating.
    Rasouli S; Gholami A; Amiri P; Kotlyar VV; Kovalev AA
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jul; 39(7):1246-1255. PubMed ID: 36215610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography.
    Ahn S; Choi J; Kim E; Dong KY; Jeon H; Ju BK; Lee KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6039-43. PubMed ID: 22121654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors.
    Dai Y; Xu K; Wu J; Li Y; Hong X; Guo H; Lin J
    Opt Lett; 2010 Dec; 35(23):3880-2. PubMed ID: 21124552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 360 nm Continuous Wave Laser-Based Contact or Non-Contact Laser Interference Nano Lithography.
    Yun DH; Shin BS; Park JH; Ma YW; Gwak CY; You DB; Kim B
    J Nanosci Nanotechnol; 2020 Jan; 20(1):128-134. PubMed ID: 31383147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference.
    Sreekanth KV; Chua JK; Murukeshan VM
    Appl Opt; 2010 Dec; 49(35):6710-7. PubMed ID: 21151227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method.
    Li X; Ni K; Zhou Q; Wang X; Tian R; Pang J
    Opt Express; 2016 May; 24(10):10759-66. PubMed ID: 27409896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.