These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36823923)

  • 1. Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence.
    Griffiths R; Osborn J; Farley O; Butterley T; Townson MJ; Wilson R
    Opt Express; 2023 Feb; 31(4):6730-6740. PubMed ID: 36823923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical turbulence profiling at the Table Mountain Facility with the Laser Communication Relay Demonstration GEO downlink.
    Birch M; Piazzolla S; Hooser P; Bennet F; Travouillon T; Buehlman W
    Opt Express; 2024 Jun; 32(12):21962-21976. PubMed ID: 38859537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.
    Ko J; Davis CC
    Appl Opt; 2017 May; 56(13):3689-3698. PubMed ID: 28463253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing turbulence profile layers through celestial single-source observations.
    Laidlaw DJ; Reeves AP; Singhal H; Calvo RM
    Appl Opt; 2022 Jan; 61(2):498-504. PubMed ID: 35200889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of atmospheric coherent length of free-space optical links by using phase fluctuation.
    Li M; Zhang P; Wang T
    Opt Express; 2024 Feb; 32(5):7243-7253. PubMed ID: 38439410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of Characteristics and Causes of a Typical Haze Pollution in Beijing in the Winter of 2019].
    Lian HY; Yang X; Zhang P; Chen YZ; Yang XY; Zhao YX; He YJ; Zhao DT
    Huan Jing Ke Xue; 2021 May; 42(5):2121-2132. PubMed ID: 33884781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring atmospheric optical turbulence: observations across zenith angles.
    Beesley LF; Osborn J; Wilson R; Farley OJD; Griffiths R; Love GD
    Appl Opt; 2024 Jun; 63(16):E48-E53. PubMed ID: 38856591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-based synchronous optical instrument for measuring atmospheric visibility and turbulence intensity: theories, design and experiments.
    Han Y; Gao P; Huang J; Zhang T; Zhuang J; Hu M; Wu Y
    Opt Express; 2018 Mar; 26(6):6833-6850. PubMed ID: 29609371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a 4-aperture DIMM instrument for atmospheric coherence time estimation: an analytical development.
    Panahi M; Shomali R; Mollabashi M
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):655-664. PubMed ID: 31044987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric boundary layer turbulence structure for severe foggy haze episodes in north China in December 2016.
    Li X; Gao CY; Gao Z; Zhang X
    Environ Pollut; 2020 Sep; 264():114726. PubMed ID: 32417576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence.
    Cui L; Xue B; Zhou F
    Opt Express; 2015 Nov; 23(23):30088-103. PubMed ID: 26698490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical adaptive power control based on atmospheric channel reciprocity for mitigating turbulence disturbances in free-space optics communication.
    Yao H; Wang W; Zhou C; Cao J; Hao Q; Chen C; Dong K; Tong S; Liu Z; Liu X; Jiang H
    Opt Express; 2023 Oct; 31(22):36992-37010. PubMed ID: 38017837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront correction algorithm based on a complete second-order DM-SHWS model for free-space optical communications.
    Yu W; Zhong J; Chen G; Mao H; Yang H; Zhong Y
    Appl Opt; 2021 Jun; 60(16):4954-4963. PubMed ID: 34143058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.
    Chen M; Liu C; Xian H
    Appl Opt; 2015 Oct; 54(29):8722-6. PubMed ID: 26479809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term measurement and characterization of boundary layer optical turbulence.
    Jellen C; Nelson C; Brownell C; Burkhardt J
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):B65-B72. PubMed ID: 38856411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light field camera study of near-ground turbulence anisotropy and observation of small outer-scales.
    Wu C; Paulson DA; Rzasa JR; Davis CC
    Opt Lett; 2020 Mar; 45(5):1156-1159. PubMed ID: 32108794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.