These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36823923)

  • 21. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system.
    Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S
    Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating turbulence distribution in the lower atmosphere using time-lapse imagery from a camera bank.
    Wilson BC; Bose-Pillai SR; McCrae JE; Fiorino ST; Freeman RP; Slabaugh LR
    Appl Opt; 2024 Jun; 63(16):E64-E77. PubMed ID: 38856593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Turbulence micro-meteorological characteristics over the plantation canopy.].
    Zhang G; Zheng N; Zhang JS; Meng P
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1787-1796. PubMed ID: 29974686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of asymmetry turbulence cells on the angle of arrival fluctuations of optical waves in anisotropic non-Kolmogorov turbulence.
    Cui L; Xue B
    J Opt Soc Am A Opt Image Sci Vis; 2015 Sep; 32(9):1691-9. PubMed ID: 26367438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free Space Ground to Satellite Optical Communications Using Kramers-Kronig Transceiver in the Presence of Atmospheric Turbulence.
    Naghshvarianjahromi M; Kumar S; Deen MJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications.
    Levine BM; Martinsen EA; Wirth A; Jankevics A; Toledo-Quinones M; Landers F; Bruno TL
    Appl Opt; 1998 Jul; 37(21):4553-60. PubMed ID: 18285910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PML: a generalized monitor of atmospheric turbulence profile with high vertical resolution.
    Chabé J; Aristidi E; Ziad A; Lantéri H; Fanteï-Caujolle Y; Giordano C; Borgnino J; Marjani M; Renaud C
    Appl Opt; 2020 Sep; 59(25):7574-7584. PubMed ID: 32902457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt.
    Zheng D; Li Y; Zhou H; Bian Y; Yang C; Li W; Qiu J; Guo H; Hong X; Zuo Y; Giles IP; Tong W; Wu J
    Opt Express; 2018 Oct; 26(22):28879-28890. PubMed ID: 30470058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating fine-scale changes in turbulence using the movements of a flapping flier.
    Lempidakis E; Ross AN; Quetting M; Garde B; Wikelski M; Shepard ELC
    J R Soc Interface; 2022 Nov; 19(196):20220577. PubMed ID: 36349445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring the statistics of turbulence: Fried parameter estimation from the wavefront sensor measurements.
    Sergeyev AV; Roggemann MC
    Appl Opt; 2011 Jul; 50(20):3519-28. PubMed ID: 21743562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.
    Brown DM; Juarez JC; Brown AM
    Appl Opt; 2013 Dec; 52(34):8402-10. PubMed ID: 24513845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scene motion detection in imagery with anisoplanatic optical turbulence using a tilt-variance-based Gaussian mixture model.
    Van Hook RL; Hardie RC
    Appl Opt; 2021 Sep; 60(25):G91-G106. PubMed ID: 34613199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of strong atmospheric non-Kolmogorov turbulence on the M-ary PSK subcarrier intensity modulated free space optical communications system performance.
    Ata Y; Baykal Y; Gökçe MC
    Appl Opt; 2019 May; 58(13):3639-3645. PubMed ID: 31044866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Features of optical image jitter in a random medium with a finite outer scale.
    Lukin VP; Nosov VV; Torgaev AV
    Appl Opt; 2014 Apr; 53(10):B196-204. PubMed ID: 24787204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Algorithmic decoding of dense OAM signal constellations for optical communications in turbulence.
    Anguita JA; Cisternas JE
    Opt Express; 2022 Apr; 30(8):13540-13555. PubMed ID: 35472964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image transmission with binary coding for free space optical communications in the presence of atmospheric turbulence.
    Huang X; Bai Y; Fu X
    Appl Opt; 2020 Nov; 59(33):10283-10288. PubMed ID: 33361959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors.
    Caldwell ED; Swann WC; Ellis JL; Bodine MI; Mak C; Kuczun N; Newbury NR; Sinclair LC; Muschinski A; Rieker GB
    Opt Express; 2020 Aug; 28(18):26661-26675. PubMed ID: 32906936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FAST: Fourier domain adaptive optics simulation tool for bidirectional ground-space optical links through atmospheric turbulence.
    Farley OJD; Townson MJ; Osborn J
    Opt Express; 2022 Jun; 30(13):23050-23064. PubMed ID: 36224993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wind noise under a pine tree canopy.
    Raspet R; Webster J
    J Acoust Soc Am; 2015 Feb; 137(2):651-9. PubMed ID: 25698000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive optics model characterizing turbulence mitigation for free space optical communications link budgets.
    Stotts LB; Andrews LC
    Opt Express; 2021 Jun; 29(13):20307-20321. PubMed ID: 34266123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.