These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36824598)
41. In vitro accuracies of 3D printed models manufactured by two different printing technologies. Emir F; Ceylan G; Ayyildiz S Eur Oral Res; 2021 May; 55(2):80-85. PubMed ID: 34250474 [TBL] [Abstract][Full Text] [Related]
42. Microstructure Analysis and Reconstruction of a Meniscus. Zhu S; Tong G; Xiang JP; Qiu S; Yao Z; Zhou X; Lin LJ Orthop Surg; 2021 Feb; 13(1):306-313. PubMed ID: 33403835 [TBL] [Abstract][Full Text] [Related]
43. Quality Control in 3D Printing: Accuracy Analysis of 3D-Printed Models of Patient-Specific Anatomy. Dorweiler B; Baqué PE; Chaban R; Ghazy A; Salem O Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33670038 [TBL] [Abstract][Full Text] [Related]
44. The Accuracy of 3D Printed Carpal Bones Generated from Cadaveric Specimens. Lebowitz C; Massaglia J; Hoffman C; Lucenti L; Dheer S; Rivlin M; Beredjiklian PK Arch Bone Jt Surg; 2021 Jul; 9(4):432-438. PubMed ID: 34423093 [TBL] [Abstract][Full Text] [Related]
45. 3D-Printed Melatonin Tablets with Braille Motifs for the Visually Impaired. Protopapa C; Siamidi A; Sakellaropoulou A; Kolipaka S; Junqueira LA; Tabriz AG; Douroumis D; Vlachou M Pharmaceuticals (Basel); 2024 Aug; 17(8):. PubMed ID: 39204122 [TBL] [Abstract][Full Text] [Related]
46. [Impact of 3D printing in surgical planning of congenital heart disease]. Cano-Zárate R; Hernández-Barajas EK; Hernández-Barajas HH; Meave-González A; Espínola-Zavaleta N Arch Cardiol Mex; 2021; 91(1):1-6. PubMed ID: 33661871 [TBL] [Abstract][Full Text] [Related]
47. Replicating Skull Base Anatomy With 3D Technologies: A Comparative Study Using 3D-scanned and 3D-printed Models of the Temporal Bone. Chae R; Sharon JD; Kournoutas I; Ovunc SS; Wang M; Abla AA; El-Sayed IH; Rubio RR Otol Neurotol; 2020 Mar; 41(3):e392-e403. PubMed ID: 31789969 [TBL] [Abstract][Full Text] [Related]
48. Cerebrovascular modelling for the management of aneurysm embolization using an intrasaccular flow diverter made by 3D printing. Algin O; Keles A; Oto C Pol J Radiol; 2022; 87():e557-e562. PubMed ID: 36420125 [TBL] [Abstract][Full Text] [Related]
49. Acceptability Analysis of 3D-Printed Food in the Area of the Czech Republic Based on Survey. Tesikova K; Jurkova L; Dordevic S; Buchtova H; Tremlova B; Dordevic D Foods; 2022 Oct; 11(20):. PubMed ID: 37430902 [TBL] [Abstract][Full Text] [Related]
50. Science museum educators' views on object-based learning: The perceived importance of authenticity and touch. de Kluis T; Romp S; Land-Zandstra AM Public Underst Sci; 2024 Apr; 33(3):325-342. PubMed ID: 37916587 [TBL] [Abstract][Full Text] [Related]
51. Effect of printing orientation on the fracture strength of additively manufactured 3-unit interim fixed dental prostheses after aging. Diken Turksayar AA; Donmez MB; Olcay EO; Demirel M; Demir E J Dent; 2022 Sep; 124():104155. PubMed ID: 35526752 [TBL] [Abstract][Full Text] [Related]
52. 3D-Printed Artificial Teeth: Accuracy and Application in Root Canal Therapy. Liang X; Liao W; Cai H; Jiang S; Chen S J Biomed Nanotechnol; 2018 Aug; 14(8):1477-1485. PubMed ID: 29903062 [TBL] [Abstract][Full Text] [Related]
53. Operative Workflow from CT to 3D Printing of the Heart: Opportunities and Challenges. Bertolini M; Rossoni M; Colombo G Bioengineering (Basel); 2021 Sep; 8(10):. PubMed ID: 34677203 [TBL] [Abstract][Full Text] [Related]
54. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Khosravani MR; Berto F; Ayatollahi MR; Reinicke T Sci Rep; 2022 Jan; 12(1):1016. PubMed ID: 35046490 [TBL] [Abstract][Full Text] [Related]
55. Accuracy of 3D Printed Model Acquired from Different Types of Intra Oral Scanners and 3D Printers. Joteppa V; Niras S; Chokhani D; Jadhao TA; Bandgar ST; Bayaskar SG J Pharm Bioallied Sci; 2024 Apr; 16(Suppl 2):S1433-S1434. PubMed ID: 38882882 [TBL] [Abstract][Full Text] [Related]
56. Creating Three-dimensional Printed Models of Acetabular Fractures for Use as Educational Tools. Manganaro MS; Morag Y; Weadock WJ; Yablon CM; Gaetke-Udager K; Stein EB Radiographics; 2017; 37(3):871-880. PubMed ID: 28493805 [TBL] [Abstract][Full Text] [Related]
57. Micro-computed tomographic evaluation of the shaping ability of three nickel-titanium rotary systems in the middle mesial canal of mandibular first molars: an ex vivo study based on 3D printed tooth replicas. Zhu Q; Liu C; Bai B; Pei F; Tang Y; Song W; Chen X; Gu Y BMC Oral Health; 2024 Mar; 24(1):294. PubMed ID: 38431556 [TBL] [Abstract][Full Text] [Related]
58. Validation study of 3D-printed anatomical models using 2 PLA printers for preoperative planning in trauma surgery, a human cadaver study. Brouwers L; Teutelink A; van Tilborg FAJB; de Jongh MAC; Lansink KWW; Bemelman M Eur J Trauma Emerg Surg; 2019 Dec; 45(6):1013-1020. PubMed ID: 29947848 [TBL] [Abstract][Full Text] [Related]
59. Optimizing 3D-printed workpieces for radiotherapy application: modelling the CT number and print time. Kadiri S; Jakupi K; Dukovski V; Hodolli G Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38198717 [TBL] [Abstract][Full Text] [Related]
60. A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry. Medina JJ; Maley JM; Sannapareddy S; Medina NN; Gilman CM; McCormack JE PLoS One; 2020; 15(8):e0236417. PubMed ID: 32790700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]