These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36824598)

  • 61. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.
    Mithila FJ; Oyola-Reynoso S; Thuo MM; Atkinson MB
    Lett Org Chem; 2016; 13(4):272-276. PubMed ID: 28659727
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Future of Biomechanical Spine Research: Conception and Design of a Dynamic 3D Printed Cervical Myelography Phantom.
    Clifton W; Nottmeier E; Damon A; Dove C; Pichelmann M
    Cureus; 2019 May; 11(5):e4591. PubMed ID: 31309016
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: An in vitro study.
    Herschdorfer L; Negreiros WM; Gallucci GO; Hamilton A
    J Prosthet Dent; 2021 Jun; 125(6):905-910. PubMed ID: 32499166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A method of characterising the complex anatomy of vascular occlusions and 3D printing biomimetic analogues.
    O'Reilly M; Beatty R; McBride S; Brennan B; Dockery P; Duffy GP
    J Anat; 2023 Jan; 242(1):64-75. PubMed ID: 35255526
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Toward Emulating Human Movement: Adopting a Data-Driven Bitmap-Based "Voxel" Multimaterial Workflow to Create a Flexible 3D Printed Neonatal Lower Limb.
    Guy BJ; Morris A; Mirjalili SA
    3D Print Addit Manuf; 2022 Oct; 9(5):349-364. PubMed ID: 36660289
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Low-cost FDM 3D-printed modular electrospray/electrospinning setup for biomedical applications.
    Huang J; Koutsos V; Radacsi N
    3D Print Med; 2020 Apr; 6(1):8. PubMed ID: 32291555
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Naked-Eye 3D Display Based on Microlens Array Using Combined Micro-Nano Imprint and UV Offset Printing Methods.
    Chen L; Chen G; Liao L; Chen H
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32344928
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery.
    Sharma KS
    Curr Drug Deliv; 2023; 20(6):752-769. PubMed ID: 36503474
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Developing Interactive Exhibits with Scientists: Three Example Collaborations from the Life Sciences Collection at the Exploratorium.
    King D; Ma J; Armendariz A; Yu K
    Integr Comp Biol; 2018 Jul; 58(1):94-102. PubMed ID: 29697800
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Value of 3D Printing Models of Left Atrial Appendage Using Real-Time 3D Transesophageal Echocardiographic Data in Left Atrial Appendage Occlusion: Applications toward an Era of Truly Personalized Medicine.
    Liu P; Liu R; Zhang Y; Liu Y; Tang X; Cheng Y
    Cardiology; 2016; 135(4):255-261. PubMed ID: 27537503
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A multi-method assessment of 3D printed micromorphological osteological features.
    Carew RM; Iacoviello F; Rando C; Moss RM; Speller R; French J; Morgan RM
    Int J Legal Med; 2022 Sep; 136(5):1391-1406. PubMed ID: 35141777
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Usefulness of Three-Dimensional Modeling in Surgical Planning, Resident Training, and Patient Education.
    Andolfi C; Plana A; Kania P; Banerjee PP; Small S
    J Laparoendosc Adv Surg Tech A; 2017 May; 27(5):512-515. PubMed ID: 27813710
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Cost-Affordable Methodology of 3D Printing of Bone Fractures Using DICOM Files in Traumatology.
    Chrz K; Bruthans J; Ptáčník J; Štuka Č
    J Med Syst; 2024 Jul; 48(1):66. PubMed ID: 38976137
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Three-Dimensional (3D) Stereolithographic Tooth Replicas Accuracy Evaluation: In Vitro Pilot Study for Dental Auto-Transplant Surgical Procedures.
    Mastrangelo F; Battaglia R; Natale D; Quaresima R
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407711
    [TBL] [Abstract][Full Text] [Related]  

  • 77. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy.
    Kamio T; Suzuki M; Asaumi R; Kawai T
    3D Print Med; 2020 Jul; 6(1):17. PubMed ID: 32737703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A low-cost surgical application of additive fabrication.
    Watson RA
    J Surg Educ; 2014; 71(1):14-7. PubMed ID: 24411417
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of printing orientation and artificial ageing on martens hardness and indentation modulus of 3D printed restorative resin materials.
    Mudhaffer S; Althagafi R; Haider J; Satterthwaite J; Silikas N
    Dent Mater; 2024 Jul; 40(7):1003-1014. PubMed ID: 38735775
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The impact of manual threshold selection in medical additive manufacturing.
    van Eijnatten M; Koivisto J; Karhu K; Forouzanfar T; Wolff J
    Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):607-615. PubMed ID: 27718124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.