These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36824621)

  • 1. Voluminous continental growth of the Altaids and its control on metallogeny.
    Wang T; Huang H; Zhang J; Wang C; Cao G; Xiao W; Yang Q; Bao X
    Natl Sci Rev; 2023 Feb; 10(2):nwac283. PubMed ID: 36824621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crustal growth and reworking: A case study from the Erguna Massif, eastern Central Asian Orogenic Belt.
    Sun C; Xu W; Cawood PA; Tang J; Zhao S; Li Y; Zhang X
    Sci Rep; 2019 Nov; 9(1):17671. PubMed ID: 31776438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.
    Zhao ZF; Dai LQ; Zheng YF
    Sci Rep; 2013 Dec; 3():3413. PubMed ID: 24301173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon.
    He ZY; Klemd R; Yan LL; Lu TY; Zhang ZM
    Sci Rep; 2018 Mar; 8(1):5054. PubMed ID: 29568032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative orotomy of the Archean Superior and Phanerozoic Altaid orogenic systems.
    Kusky TM; Celâl Şengör AM
    Natl Sci Rev; 2023 Feb; 10(2):nwac235. PubMed ID: 36817838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboniferous slab-retreating subduction of backarc oceans: the final large-scale lateral accretion of the southern Central Asian Orogenic Belt.
    Zhou H; Zhao G; Han Y; Zhang D; Wang M; Pei X; Tserendash N; Zhao Q; Orsoo EO
    Sci Bull (Beijing); 2022 Jul; 67(13):1388-1398. PubMed ID: 36546270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal ore deposits in collisional orogens.
    Zheng Y; Mao J; Chen Y; Sun W; Ni P; Yang X
    Sci Bull (Beijing); 2019 Feb; 64(3):205-212. PubMed ID: 36659619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil.
    Ferreira ACD; Dantas EL; Fuck RA; Nedel IM
    Sci Rep; 2020 May; 10(1):7855. PubMed ID: 32398674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking magmatism with collision in an accretionary orogen.
    Li S; Chung SL; Wilde SA; Wang T; Xiao WJ; Guo QQ
    Sci Rep; 2016 May; 6():25751. PubMed ID: 27167207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application.
    Hu F; Ducea MN; Liu S; Chapman JB
    Sci Rep; 2017 Aug; 7(1):7058. PubMed ID: 28765580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur and metal fertilization of the lower continental crust.
    Locmelis M; Fiorentini ML; Rushmer T; Arevalo R; Adam J; Denyszyn SW
    Lithos; 2016 Feb; 244():74-93. PubMed ID: 32908321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon.
    Kemp AI; Hawkesworth CJ; Paterson BA; Kinny PD
    Nature; 2006 Feb; 439(7076):580-3. PubMed ID: 16452978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar.
    Gardiner NJ; Hawkesworth CJ; Robb LJ; Whitehouse MJ; Roberts NMW; Kirkland CL; Evans NJ
    Sci Rep; 2017 Apr; 7(1):748. PubMed ID: 28389635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of burial rates in convergent settings decreased as Earth aged.
    Nicoli G; Moyen JF; Stevens G
    Sci Rep; 2016 May; 6():26359. PubMed ID: 27216133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits.
    Hou Z; Wang Q; Zhang H; Xu B; Yu N; Wang R; Groves DI; Zheng Y; Han S; Gao L; Yang L
    Natl Sci Rev; 2023 Mar; 10(3):nwac257. PubMed ID: 36879845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks.
    Müntener O; Ewing T; Baumgartner LP; Manzini M; Roux T; Pellaud P; Allemann L
    Contrib Mineral Petrol; 2018; 173(5):38. PubMed ID: 29681649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No mafic layer in 80 km thick Tibetan crust.
    Wang G; Thybo H; Artemieva IM
    Nat Commun; 2021 Feb; 12(1):1069. PubMed ID: 33594060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volcanic-plutonic parity and the differentiation of the continental crust.
    Keller CB; Schoene B; Barboni M; Samperton KM; Husson JM
    Nature; 2015 Jul; 523(7560):301-7. PubMed ID: 26178961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The implications of crustal architecture and transcrustal upflow zones on the metal endowment of a world-class mineral district.
    Jørgensen TRC; Gibson HL; Roots EA; Vayavur R; Hill GJ; Snyder DB; Naghizadeh M
    Sci Rep; 2022 Aug; 12(1):14710. PubMed ID: 36038601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny.
    Holwell DA; Fiorentini ML; Knott TR; McDonald I; Blanks DE; Campbell McCuaig T; Gorczyk W
    Nat Commun; 2022 Jan; 13(1):573. PubMed ID: 35102157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.