These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36824888)
1. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Wu J; Quraishi IH; Zhang Y; Bromwich M; Kaczmarek LK bioRxiv; 2023 Feb; ():. PubMed ID: 36824888 [TBL] [Abstract][Full Text] [Related]
2. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Wu J; Quraishi IH; Zhang Y; Bromwich M; Kaczmarek LK Cell Rep; 2024 Mar; 43(3):113904. PubMed ID: 38457342 [TBL] [Abstract][Full Text] [Related]
3. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na Zhang Y; Ni W; Horwich AL; Kaczmarek LK J Neurosci; 2017 Feb; 37(8):2258-2265. PubMed ID: 28119399 [TBL] [Abstract][Full Text] [Related]
4. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Shore AN; Colombo S; Tobin WF; Petri S; Cullen ER; Dominguez S; Bostick CD; Beaumont MA; Williams D; Khodagholy D; Yang M; Lutz CM; Peng Y; Gelinas JN; Goldstein DB; Boland MJ; Frankel WN; Weston MC Cell Rep; 2020 Oct; 33(4):108303. PubMed ID: 33113364 [TBL] [Abstract][Full Text] [Related]
5. An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack K Quraishi IH; Stern S; Mangan KP; Zhang Y; Ali SR; Mercier MR; Marchetto MC; McLachlan MJ; Jones EM; Gage FH; Kaczmarek LK J Neurosci; 2019 Sep; 39(37):7438-7449. PubMed ID: 31350261 [TBL] [Abstract][Full Text] [Related]
6. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice. Lu S; Das P; Fadool DA; Kaczmarek LK J Neurophysiol; 2010 Jun; 103(6):3311-9. PubMed ID: 20393063 [TBL] [Abstract][Full Text] [Related]
7. Heterozygous expression of a Shore AN; Li K; Safari M; Qunies AM; Spitznagel BD; Weaver CD; Emmitte KA; Frankel WN; Weston MC bioRxiv; 2024 Aug; ():. PubMed ID: 37873369 [TBL] [Abstract][Full Text] [Related]
8. Emerging role of the KCNT1 Slack channel in intellectual disability. Kim GE; Kaczmarek LK Front Cell Neurosci; 2014; 8():209. PubMed ID: 25120433 [TBL] [Abstract][Full Text] [Related]
9. Heterozygous expression of a Shore AN; Li K; Safari M; Qunies AM; Spitznagel BD; Weaver CD; Emmitte K; Frankel W; Weston MC Elife; 2024 Oct; 13():. PubMed ID: 39392867 [TBL] [Abstract][Full Text] [Related]
11. Aberrant Sodium Channel Currents and Hyperexcitability of Medial Entorhinal Cortex Neurons in a Mouse Model of Ottolini M; Barker BS; Gaykema RP; Meisler MH; Patel MK J Neurosci; 2017 Aug; 37(32):7643-7655. PubMed ID: 28676574 [No Abstract] [Full Text] [Related]
12. Slack K Skrabak D; Bischof H; Pham T; Ruth P; Ehinger R; Matt L; Lukowski R Commun Biol; 2023 Oct; 6(1):1029. PubMed ID: 37821582 [TBL] [Abstract][Full Text] [Related]
13. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. Zhang Y; Brown MR; Hyland C; Chen Y; Kronengold J; Fleming MR; Kohn AB; Moroz LL; Kaczmarek LK J Neurosci; 2012 Oct; 32(44):15318-27. PubMed ID: 23115170 [TBL] [Abstract][Full Text] [Related]
14. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits. Wu J; El-Hassar L; Datta D; Thomas M; Zhang Y; Jenkins DP; DeLuca NJ; Chatterjee M; Gribkoff VK; Arnsten AFT; Kaczmarek LK Mol Neurobiol; 2024 Apr; 61(4):2430-2445. PubMed ID: 37889366 [TBL] [Abstract][Full Text] [Related]
15. Localization of the Na+-activated K+ channel Slick in the rat central nervous system. Bhattacharjee A; von Hehn CA; Mei X; Kaczmarek LK J Comp Neurol; 2005 Mar; 484(1):80-92. PubMed ID: 15717307 [TBL] [Abstract][Full Text] [Related]
16. Slack K Ehinger R; Kuret A; Matt L; Frank N; Wild K; Kabagema-Bilan C; Bischof H; Malli R; Ruth P; Bausch AE; Lukowski R FASEB J; 2021 May; 35(5):e21568. PubMed ID: 33817875 [TBL] [Abstract][Full Text] [Related]
17. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis. Gururaj S; Evely KM; Pryce KD; Li J; Qu J; Bhattacharjee A J Biol Chem; 2017 Nov; 292(47):19304-19314. PubMed ID: 28982974 [TBL] [Abstract][Full Text] [Related]
18. Design, synthesis, and biological evaluation of a novel series of 1,2,4-oxadiazole inhibitors of SLACK potassium channels: Identification of in vitro tool VU0935685. Qunies AM; Spitznagel BD; Du Y; David Weaver C; Emmitte KA Bioorg Med Chem; 2023 Nov; 95():117487. PubMed ID: 37812884 [TBL] [Abstract][Full Text] [Related]
19. The Na Matt L; Pham T; Skrabak D; Hoffmann F; Eckert P; Yin J; Gisevius M; Ehinger R; Bausch A; Ueffing M; Boldt K; Ruth P; Lukowski R Cell Mol Life Sci; 2021 Dec; 78(23):7569-7587. PubMed ID: 34664085 [TBL] [Abstract][Full Text] [Related]
20. Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (K Quraishi IH; Mercier MR; McClure H; Couture RL; Schwartz ML; Lukowski R; Ruth P; Kaczmarek LK Sci Rep; 2020 Feb; 10(1):3213. PubMed ID: 32081855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]