BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36825361)

  • 1. Tipburn resilience in lettuce (Lactuca spp.) - the importance of germplasm resources and production system-specific assays.
    Beacham AM; Hand P; Teakle GR; Barker GC; Pink DAC; Monaghan JM
    J Sci Food Agric; 2023 Jul; 103(9):4481-4488. PubMed ID: 36825361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic architecture of tipburn resistance in lettuce.
    Macias-González M; Truco MJ; Bertier LD; Jenni S; Simko I; Hayes RJ; Michelmore RW
    Theor Appl Genet; 2019 Aug; 132(8):2209-2222. PubMed ID: 31055612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution genetic dissection of the major QTL for tipburn resistance in lettuce, Lactuca sativa.
    Macias-González M; Truco MJ; Han R; Jenni S; Michelmore RW
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33772545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuolar Ca
    Beacham AM; Wilkins KA; Davies JM; Monaghan JM
    Plant Physiol Biochem; 2023 Aug; 201():107792. PubMed ID: 37285692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.
    Carassay LR; Bustos DA; Golberg AD; Taleisnik E
    J Plant Physiol; 2012 Feb; 169(3):285-93. PubMed ID: 22137608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic basis of water-use efficiency and yield in lettuce.
    Damerum A; Smith HK; Clarkson G; Truco MJ; Michelmore RW; Taylor G
    BMC Plant Biol; 2021 May; 21(1):237. PubMed ID: 34044761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce.
    Jenni S; Truco MJ; Michelmore RW
    Theor Appl Genet; 2013 Sep; ():. PubMed ID: 24078012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.).
    Han R; Lavelle D; Truco MJ; Michelmore R
    Theor Appl Genet; 2021 Oct; 134(10):3473-3487. PubMed ID: 34245320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe.
    Uwimana B; D'Andrea L; Felber F; Hooftman DA; Den Nijs HC; Smulders MJ; Visser RG; Van De Wiel CC
    Mol Ecol; 2012 Jun; 21(11):2640-54. PubMed ID: 22512715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence of the Mitochondrial Genome of
    Fertet A; Graindorge S; Koechler S; de Boer GJ; Guilloteau-Fonteny E; Gualberto JM
    Front Plant Sci; 2021; 12():697136. PubMed ID: 34381482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection.
    den Boer E; Zhang NW; Pelgrom K; Visser RG; Niks RE; Jeuken MJ
    Theor Appl Genet; 2013 Dec; 126(12):2995-3007. PubMed ID: 24037018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome assembly and analysis of Lactuca virosa: implications for lettuce breeding.
    Xiong W; van Workum DM; Berke L; Bakker LV; Schijlen E; Becker FFM; van de Geest H; Peters S; Michelmore R; van Treuren R; Jeuken M; Smit S; Schranz ME
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37740775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.).
    Simko I
    J Hered; 2009; 100(2):256-62. PubMed ID: 18796462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.).
    Stoffel K; van Leeuwen H; Kozik A; Caldwell D; Ashrafi H; Cui X; Tan X; Hill T; Reyes-Chin-Wo S; Truco MJ; Michelmore RW; Van Deynze A
    BMC Genomics; 2012 May; 13():185. PubMed ID: 22583801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions.
    Uwimana B; Smulders MJ; Hooftman DA; Hartman Y; van Tienderen PH; Jansen J; McHale LK; Michelmore RW; van de Wiel CC; Visser RG
    Theor Appl Genet; 2012 Oct; 125(6):1097-111. PubMed ID: 22660630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp.
    Sicard D; Woo SS; Arroyo-Garcia R; Ochoa O; Nguyen D; Korol A; Nevo E; Michelmore R
    Theor Appl Genet; 1999 Aug; 99(3-4):405-18. PubMed ID: 22665172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization.
    Matoba H; Mizutani T; Nagano K; Hoshi Y; Uchiyama H
    Hereditas; 2007 Dec; 144(6):235-43. PubMed ID: 18215246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium localization in lettuce leaves with and without tipburn: comparison of controlled-environment and field-grown plants.
    Barta DJ; Tibbitts TW
    J Am Soc Hortic Sci; 1991 Sep; 116(5):870-5. PubMed ID: 11538112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.
    Rauscher G; Simko I
    BMC Plant Biol; 2013 Jan; 13():11. PubMed ID: 23339733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm.
    Jeuken MJ; Lindhout P
    Theor Appl Genet; 2004 Jul; 109(2):394-401. PubMed ID: 15103409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.