BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36825433)

  • 1. A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic Heterocycles.
    Bauer C; Müller F; Keskin S; Zobel M; Kempe R
    Chemistry; 2023 May; 29(30):e202300561. PubMed ID: 36825433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a General and Selective Nanostructured Cobalt Catalyst for the Hydrogenation of Benzofurans, Indoles and Benzothiophenes.
    Zhou B; Chandrashekhar VG; Ma Z; Kreyenschulte C; Bartling S; Lund H; Beller M; Jagadeesh RV
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202215699. PubMed ID: 36636903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization.
    Klausfelder B; Blach P; de Jonge N; Kempe R
    Chemistry; 2022 Aug; 28(47):e202201307. PubMed ID: 35638452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles.
    Odom AL; McDaniel TJ
    Acc Chem Res; 2015 Nov; 48(11):2822-33. PubMed ID: 26295382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones.
    Schönauer T; Thomä SLJ; Kaiser L; Zobel M; Kempe R
    Chemistry; 2021 Jan; 27(5):1609-1614. PubMed ID: 33236790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-enabled and magnesium-activated hydrogenation with earth-abundant cobalt catalysts.
    Han B; Zhang M; Jiao H; Ma H; Wang J; Zhang Y
    RSC Adv; 2021 Dec; 11(63):39934-39939. PubMed ID: 35494102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Active and Easily Accessible Cobalt Catalyst for Selective Hydrogenation of C═O Bonds.
    Rösler S; Obenauf J; Kempe R
    J Am Chem Soc; 2015 Jul; 137(25):7998-8001. PubMed ID: 26080036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A General Catalyst Based on Cobalt Core-Shell Nanoparticles for the Hydrogenation of N-Heteroarenes Including Pyridines.
    Murugesan K; Chandrashekhar VG; Kreyenschulte C; Beller M; Jagadeesh RV
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17408-17412. PubMed ID: 32543735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst.
    Antil N; Kumar A; Akhtar N; Begum W; Chauhan M; Newar R; Rawat MS; Manna K
    Inorg Chem; 2022 Jan; 61(2):1031-1040. PubMed ID: 34967211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of N-Heterocycles via Oxidant-Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts.
    Sun K; Shan H; Lu GP; Cai C; Beller M
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25188-25202. PubMed ID: 34138507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst.
    Ryabchuk P; Leischner T; Kreyenschulte C; Spannenberg A; Junge K; Beller M
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18679-18685. PubMed ID: 32779271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-Derived Catalysts for Selective Hydrogenation of Nitroarenes.
    Sahoo B; Formenti D; Topf C; Bachmann S; Scalone M; Junge K; Beller M
    ChemSusChem; 2017 Aug; 10(15):3035-3039. PubMed ID: 28650569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts.
    Murugesan K; Senthamarai T; Sohail M; Alshammari AS; Pohl MM; Beller M; Jagadeesh RV
    Chem Sci; 2018 Dec; 9(45):8553-8560. PubMed ID: 30568779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes.
    Jagadeesh RV; Stemmler T; Surkus AE; Bauer M; Pohl MM; Radnik J; Junge K; Junge H; Brückner A; Beller M
    Nat Protoc; 2015 Jun; 10(6):916-26. PubMed ID: 25996791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile.
    Qian BC; Wang X; Wang Q; Zhu XQ; Shen GB
    RSC Adv; 2024 Jan; 14(1):222-232. PubMed ID: 38173608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ordered Porous Nitrogen-Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of N-Heterocycles.
    Han Y; Wang Z; Xu R; Zhang W; Chen W; Zheng L; Zhang J; Luo J; Wu K; Zhu Y; Chen C; Peng Q; Liu Q; Hu P; Wang D; Li Y
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11262-11266. PubMed ID: 29978942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst.
    Toutov AA; Liu WB; Betz KN; Fedorov A; Stoltz BM; Grubbs RH
    Nature; 2015 Feb; 518(7537):80-4. PubMed ID: 25652999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.