BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36825776)

  • 1. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications.
    Lavorato GC; de Almeida AA; Vericat C; Fonticelli MH
    Nanotechnology; 2023 Feb; 34(19):. PubMed ID: 36825776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.
    Ajinkya N; Yu X; Kaithal P; Luo H; Somani P; Ramakrishna S
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications.
    Madadi M; Khoee S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(6):e1908. PubMed ID: 37271573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes.
    Chen CJ; Lai HY; Lin CC; Wang JS; Chiang RK
    Nanoscale Res Lett; 2009 Jul; 4(11):1343-50. PubMed ID: 20628451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition.
    Nahorniak M; Pasetto P; Greneche JM; Samaryk V; Auguste S; Rousseau A; Nosova N; Varvarenko S
    Beilstein J Nanotechnol; 2023; 14():11-22. PubMed ID: 36703905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review.
    Wallyn J; Anton N; Vandamme TF
    Pharmaceutics; 2019 Nov; 11(11):. PubMed ID: 31726769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Control over the Morphology and the Oxidation State of Iron Oxide Nanoparticles.
    Escoda-Torroella M; Moya C; Rodríguez AF; Batlle X; Labarta A
    Langmuir; 2021 Jan; 37(1):35-45. PubMed ID: 33301314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of spontaneous phase transitions from wüstite to magnetite in superparamagnetic core-shell nanocubes of iron oxides.
    Sojková T; Gröger R; Poloprudský J; Kuběna I; Schneeweiss O; Sojka M; Šiška Z; Pongrácz J; Pizúrová N
    Nanoscale; 2024 Mar; 16(11):5551-5560. PubMed ID: 38380646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetite nanoparticles: Synthesis methods - A comparative review.
    Niculescu AG; Chircov C; Grumezescu AM
    Methods; 2022 Mar; 199():16-27. PubMed ID: 33915292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device.
    Chircov C; Bîrcă AC; Grumezescu AM; Vasile BS; Oprea O; Nicoară AI; Yang CH; Huang KS; Andronescu E
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe
    Nguyen MD; Tran HV; Xu S; Lee TR
    Appl Sci (Basel); 2021 Dec; 11(23):. PubMed ID: 35844268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications.
    Wei R; Xu Y; Xue M
    J Mater Chem B; 2021 Mar; 9(8):1965-1979. PubMed ID: 33595050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Magnetic Nanoparticles for Biomedical Applications.
    Cardoso VF; Francesko A; Ribeiro C; Bañobre-López M; Martins P; Lanceros-Mendez S
    Adv Healthc Mater; 2018 Mar; 7(5):. PubMed ID: 29280314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-Mediated Synthesis of Magnetite Nanoparticles with
    Paut A; Guć L; Vrankić M; Crnčević D; Šenjug P; Pajić D; Odžak R; Šprung M; Nakić K; Marciuš M; Prkić A; Mitar I
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications.
    Ali S; Sharma AS; Ahmad W; Zareef M; Hassan MM; Viswadevarayalu A; Jiao T; Li H; Chen Q
    Crit Rev Anal Chem; 2021; 51(5):454-481. PubMed ID: 32233874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications.
    Wu W; Jiang CZ; Roy VA
    Nanoscale; 2016 Dec; 8(47):19421-19474. PubMed ID: 27812592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Multiple Functional Layers in the Structure of Magnetic Nanoparticles and Their Influence on Albumin Interaction.
    Pieretti JC; Beurton J; Munevar J; Nagamine LCCM; Le Faou A; Seabra AB; Clarot I; Boudier A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
    Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP
    Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold/Wüstite core-shell nanoparticles: suppression of iron oxidation through the electron-transfer phenomenon.
    Singh P; Mott DM; Maenosono S
    Chemphyschem; 2013 Oct; 14(14):3278-83. PubMed ID: 23913505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.