These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36825808)

  • 1. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA double-strand break-derived RNA drives TIRR/53BP1 complex dissociation.
    Ketley RF; Battistini F; Alagia A; Mondielli C; Iehl F; Balikçi E; Huber KVM; Orozco M; Gullerova M
    Cell Rep; 2022 Oct; 41(4):111526. PubMed ID: 36288694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to assess RNA-RNA interactions in situ using an RNA-proximity ligation assay.
    Basavappa MG; Henao-Mejia J; Cherry S
    STAR Protoc; 2022 Dec; 3(4):101892. PubMed ID: 36595913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of protein enrichment at site-specific DNA double-strand breaks by chromatin immunoprecipitation in cultured human cells.
    Sharma AK; Fitieh AM; Locke AJ; Ali JYH; Ismail IH
    STAR Protoc; 2023 Mar; 4(1):101917. PubMed ID: 36520630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. exo-FISH: Protocol for detecting DNA breaks in repetitive regions of mammalian genomes.
    Saayman X; Graham E; Leung CWB; Esashi F
    STAR Protoc; 2023 Sep; 4(3):102487. PubMed ID: 37549036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein.
    Botuyan MV; Cui G; Drané P; Oliveira C; Detappe A; Brault ME; Parnandi N; Chaubey S; Thompson JR; Bragantini B; Zhao D; Chapman JR; Chowdhury D; Mer G
    Nat Struct Mol Biol; 2018 Jul; 25(7):591-600. PubMed ID: 29967538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent
    Cui H; Sepehrimanesh M; Coutee CA; Akter M; Hosain MA; Ding B
    STAR Protoc; 2022 Dec; 3(4):101813. PubMed ID: 36386872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized proximity ligation assay (PLA) for detection of RNA-protein complex interactions in cell lines.
    George J; Mittal S; Kadamberi IP; Pradeep S; Chaluvally-Raghavan P
    STAR Protoc; 2022 Jun; 3(2):101340. PubMed ID: 35620072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of the DNA binding of transcription factors in situ at the single-cell resolution in cultured cells by proximity ligation assay.
    Ram BM; Dai C
    STAR Protoc; 2023 Dec; 4(4):102692. PubMed ID: 37917578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to measure end resection intermediates at sequence-specific DNA double-strand breaks by quantitative polymerase chain reaction using ER-AsiSI U2OS cells.
    Sharma AK; Fitieh AM; Hafez Ali JY; Ismail IH
    STAR Protoc; 2022 Dec; 3(4):101861. PubMed ID: 36595899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for in situ visualization of Protein-Nascent RNA interactions in single cell using Proximity Ligation Assay (IPNR-PLA) in mammalian cells.
    Das R; Dey A; Uppal S
    Transcription; 2023; 14(3-5):146-157. PubMed ID: 36927323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol to investigate the effects of lncRNAs on in vivo protein-protein interactions using proximity ligation assay.
    Zhang L; He M; Wang P; Yu J; Li D
    STAR Protoc; 2023 Dec; 4(4):102757. PubMed ID: 38043056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous labeling of single- and double-strand DNA breaks by DNA breakage detection-FISH (DBD-FISH).
    Fernández JL; Cajigal D; Gosálvez J
    Methods Mol Biol; 2011; 682():133-47. PubMed ID: 21057926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for mapping physiological DSBs using in-suspension break labeling in situ and sequencing.
    Hidmi O; Oster S; Shatleh D; Monin J; Aqeilan RI
    STAR Protoc; 2024 Jun; 5(2):103059. PubMed ID: 38717906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs.
    Parnandi N; Rendo V; Cui G; Botuyan MV; Remisova M; Nguyen H; Drané P; Beroukhim R; Altmeyer M; Mer G; Chowdhury D
    Mol Cell; 2021 Jun; 81(12):2583-2595.e6. PubMed ID: 33961797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing the translational activation of a particular mRNA in zebrafish embryos using in situ hybridization and proximity ligation assay.
    Sato K; Kotani T
    STAR Protoc; 2024 Jun; 5(2):102951. PubMed ID: 38492224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair.
    An L; Dong C; Li J; Chen J; Yuan J; Huang J; Chan KM; Yu CH; Huen MSY
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8286-E8295. PubMed ID: 30104380
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Sharanek A; Raco L; Soleimani VD; Jahani-Asl A
    STAR Protoc; 2022 Sep; 3(3):101554. PubMed ID: 35880130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Damage In Situ Ligation Followed by Proximity Ligation Assay (DI-PLA).
    Galbiati A; d'Adda di Fagagna F
    Methods Mol Biol; 2019; 1896():11-20. PubMed ID: 30474835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.