These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 36826231)
1. Blocking CD47-SIRPα Signal Axis as Promising Immunotherapy in Ovarian Cancer. Luo X; Shen Y; Huang W; Bao Y; Mo J; Yao L; Yuan L Cancer Control; 2023; 30():10732748231159706. PubMed ID: 36826231 [TBL] [Abstract][Full Text] [Related]
2. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Hao Y; Zhou X; Li Y; Li B; Cheng L Int Immunopharmacol; 2023 Jul; 120():110255. PubMed ID: 37187126 [TBL] [Abstract][Full Text] [Related]
3. Cancer immunotherapy targeting the CD47/SIRPα axis. Weiskopf K Eur J Cancer; 2017 May; 76():100-109. PubMed ID: 28286286 [TBL] [Abstract][Full Text] [Related]
4. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T Life Sci; 2021 May; 273():119150. PubMed ID: 33662426 [TBL] [Abstract][Full Text] [Related]
5. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Matlung HL; Szilagyi K; Barclay NA; van den Berg TK Immunol Rev; 2017 Mar; 276(1):145-164. PubMed ID: 28258703 [TBL] [Abstract][Full Text] [Related]
6. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806 [TBL] [Abstract][Full Text] [Related]
7. [Latest Findings on the Role of CD47 in Tumor Immune Evasion and Related Targeted Therapies]. Jie XL; Kong YY; Zhou GB Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 May; 54(3):455-461. PubMed ID: 37248568 [TBL] [Abstract][Full Text] [Related]
8. CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies. Bouwstra R; van Meerten T; Bremer E Clin Transl Med; 2022 Aug; 12(8):e943. PubMed ID: 35908284 [TBL] [Abstract][Full Text] [Related]
9. The development of small-molecule inhibitors targeting CD47. Yu WB; Ye ZH; Chen X; Shi JJ; Lu JJ Drug Discov Today; 2021 Feb; 26(2):561-568. PubMed ID: 33197622 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. Voets E; Paradé M; Lutje Hulsik D; Spijkers S; Janssen W; Rens J; Reinieren-Beeren I; van den Tillaart G; van Duijnhoven S; Driessen L; Habraken M; van Zandvoort P; Kreijtz J; Vink P; van Elsas A; van Eenennaam H J Immunother Cancer; 2019 Dec; 7(1):340. PubMed ID: 31801627 [TBL] [Abstract][Full Text] [Related]
11. The biological roles of CD47 in ovarian cancer progression. Xing L; Wang Z; Feng Y; Luo H; Dai G; Sang L; Zhang C; Qian J Cancer Immunol Immunother; 2024 Jun; 73(8):145. PubMed ID: 38832992 [TBL] [Abstract][Full Text] [Related]
12. CD47/SIRPα axis: bridging innate and adaptive immunity. van Duijn A; Van der Burg SH; Scheeren FA J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35831032 [TBL] [Abstract][Full Text] [Related]
13. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240 [TBL] [Abstract][Full Text] [Related]
14. Advances in Anti-Tumor Treatments Targeting the CD47/SIRPα Axis. Zhang W; Huang Q; Xiao W; Zhao Y; Pi J; Xu H; Zhao H; Xu J; Evans CE; Jin H Front Immunol; 2020; 11():18. PubMed ID: 32082311 [TBL] [Abstract][Full Text] [Related]
15. CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Jia X; Yan B; Tian X; Liu Q; Jin J; Shi J; Hou Y Int J Biol Sci; 2021; 17(13):3281-3287. PubMed ID: 34512146 [TBL] [Abstract][Full Text] [Related]
16. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. Ho CC; Guo N; Sockolosky JT; Ring AM; Weiskopf K; Özkan E; Mori Y; Weissman IL; Garcia KC J Biol Chem; 2015 May; 290(20):12650-63. PubMed ID: 25837251 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Chen XJ; Guo CH; Wang ZC; Yang Y; Pan YH; Liang JY; Sun MG; Fan LS; Liang L; Wang W Cell Commun Signal; 2024 Jan; 22(1):15. PubMed ID: 38183060 [TBL] [Abstract][Full Text] [Related]
18. Macrocyclic Peptide-Mediated Blockade of the CD47-SIRPα Interaction as a Potential Cancer Immunotherapy. Hazama D; Yin Y; Murata Y; Matsuda M; Okamoto T; Tanaka D; Terasaka N; Zhao J; Sakamoto M; Kakuchi Y; Saito Y; Kotani T; Nishimura Y; Nakagawa A; Suga H; Matozaki T Cell Chem Biol; 2020 Sep; 27(9):1181-1191.e7. PubMed ID: 32640189 [TBL] [Abstract][Full Text] [Related]
19. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: a hematotoxic perspective. Chen YC; Shi W; Shi JJ; Lu JJ J Cancer Res Clin Oncol; 2022 Jan; 148(1):1-14. PubMed ID: 34609596 [TBL] [Abstract][Full Text] [Related]
20. Exosomal CD47 Plays an Essential Role in Immune Evasion in Ovarian Cancer. Shimizu A; Sawada K; Kobayashi M; Yamamoto M; Yagi T; Kinose Y; Kodama M; Hashimoto K; Kimura T Mol Cancer Res; 2021 Sep; 19(9):1583-1595. PubMed ID: 34016744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]