These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 36826258)

  • 1. Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering.
    Xie M; Su J; Zhou S; Li J; Zhang K
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
    You F; Eames BF; Chen X
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printability and Shape Fidelity of Bioinks in 3D Bioprinting.
    Schwab A; Levato R; D'Este M; Piluso S; Eglin D; Malda J
    Chem Rev; 2020 Oct; 120(19):11028-11055. PubMed ID: 32856892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues.
    Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G
    Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications
    Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY
    J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications.
    Dell AC; Wagner G; Own J; Geibel JP
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks.
    Lee SC; Gillispie G; Prim P; Lee SJ
    Chem Rev; 2020 Oct; 120(19):10834-10886. PubMed ID: 32815369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks.
    Brunel LG; Hull SM; Heilshorn SC
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35487196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting.
    Qin Z; Pang Y; Lu C; Yang Y; Gao M; Zheng L; Zhao J
    Biomater Sci; 2022 Nov; 10(22):6549-6557. PubMed ID: 36205771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening.
    Gebeyehu A; Surapaneni SK; Huang J; Mondal A; Wang VZ; Haruna NF; Bagde A; Arthur P; Kutlehria S; Patel N; Rishi AK; Singh M
    Sci Rep; 2021 Jan; 11(1):372. PubMed ID: 33431915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications.
    Teixeira MC; Lameirinhas NS; Carvalho JPF; Silvestre AJD; Vilela C; Freire CSR
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.