These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 36826259)
1. Stimuli-Responsive Properties of Supramolecular Gels Based on Pyridyl- Jayabhavan SS; Kristinsson B; Ghosh D; Breton C; Damodaran KK Gels; 2023 Jan; 9(2):. PubMed ID: 36826259 [TBL] [Abstract][Full Text] [Related]
2. Making and Breaking of Gels: Stimuli-Responsive Properties of Bis(Pyridyl- Sudhakaran Jayabhavan S; Ghosh D; Damodaran KK Molecules; 2021 Oct; 26(21):. PubMed ID: 34770831 [TBL] [Abstract][Full Text] [Related]
3. Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification. Ghosh D; Mulvee MT; Damodaran KK Molecules; 2019 Sep; 24(19):. PubMed ID: 31557821 [TBL] [Abstract][Full Text] [Related]
4. Role of Ghosh D; Bjornsson R; Damodaran KK Gels; 2020 Nov; 6(4):. PubMed ID: 33233596 [TBL] [Abstract][Full Text] [Related]
5. Designing Stimuli-Responsive Supramolecular Gels by Tuning the Non-Covalent Interactions of the Functional Groups. Kuppadakkath G; Volkova I; Damodaran KK Gels; 2024 Sep; 10(9):. PubMed ID: 39330186 [TBL] [Abstract][Full Text] [Related]
6. Remarkable shape-sustaining, load-bearing, and self-healing properties displayed by a supramolecular gel derived from a bis-pyridyl-bis-amide of L-phenyl alanine. Das UK; Banerjee S; Dastidar P Chem Asian J; 2014 Sep; 9(9):2475-82. PubMed ID: 24962554 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular Gels Based on Kuppadakkath G; Jayabhavan SS; Damodaran KK Molecules; 2024 May; 29(9):. PubMed ID: 38731640 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular Gels from Bis-amides of L-Phenylalanine: Synthesis, Structure and Material Applications. Manna U; Roy R; Datta HK; Dastidar P Chem Asian J; 2022 Oct; 17(19):e202200660. PubMed ID: 35912912 [TBL] [Abstract][Full Text] [Related]
9. Nonpolymeric hydrogelator derived from N-(4-pyridyl)isonicotinamide. Kumar DK; Jose DA; Dastidar P; Das A Langmuir; 2004 Nov; 20(24):10413-8. PubMed ID: 15544367 [TBL] [Abstract][Full Text] [Related]
10. Stimuli-responsive gelators from carbamoyl sugar derivatives and their responses to metal ions and tetrabutylammonium salts. Wang D; Chen A; Morris J; Wang G RSC Adv; 2020 Nov; 10(66):40068-40083. PubMed ID: 35520864 [TBL] [Abstract][Full Text] [Related]
11. The Role of Functional Groups in Tuning the Self-Assembly Modes and Physical Properties of Multicomponent Gels. Sudhakaran Jayabhavan S; Kuppadakkath G; Damodaran KK Chempluschem; 2023 Aug; 88(8):e202300302. PubMed ID: 37407430 [TBL] [Abstract][Full Text] [Related]
14. Fine-Tuning of Molecular Structures to Generate Carbohydrate Based Super Gelators and Their Applications for Drug Delivery and Dye Absorption. Bietsch J; Olson M; Wang G Gels; 2021 Sep; 7(3):. PubMed ID: 34563020 [TBL] [Abstract][Full Text] [Related]
15. Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator. Kartha KK; Praveen VK; Babu SS; Cherumukkil S; Ajayaghosh A Chem Asian J; 2015 Oct; 10(10):2250-6. PubMed ID: 25930244 [TBL] [Abstract][Full Text] [Related]
17. Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network. Das UK; Dastidar P Chemistry; 2012 Oct; 18(41):13079-90. PubMed ID: 22961889 [TBL] [Abstract][Full Text] [Related]
18. l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol-Water Mixtures. Miao Y; Zhang J; Zhang G; He S; Xu B Gels; 2022 Dec; 9(1):. PubMed ID: 36661797 [TBL] [Abstract][Full Text] [Related]
19. Development of Self-Healing d-Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials. Chen S; Zhang B; Zhang N; Ge F; Zhang B; Wang X; Song J ACS Appl Mater Interfaces; 2018 Feb; 10(6):5871-5879. PubMed ID: 29350518 [TBL] [Abstract][Full Text] [Related]