These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36826328)
1. Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Zhu S; Yan D; Chen L; Wang Y; Zhu F; Ye Y; Zheng Y; Yu W; Zheng Q Gels; 2023 Feb; 9(2):. PubMed ID: 36826328 [TBL] [Abstract][Full Text] [Related]
2. Effect of Predamage on the Fracture Energy of Double-Network Hydrogels. Zheng Y; Wang Y; Nakajima T; Gong JP ACS Macro Lett; 2024 Jan; ():130-137. PubMed ID: 38205953 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect. Tao Z; Fan H; Huang J; Sun T; Kurokawa T; Gong JP ACS Appl Mater Interfaces; 2019 Oct; 11(40):37139-37146. PubMed ID: 31525861 [TBL] [Abstract][Full Text] [Related]
4. How chain dynamics affects crack initiation in double-network gels. Zheng Y; Matsuda T; Nakajima T; Cui W; Zhang Y; Hui CY; Kurokawa T; Gong JP Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34848539 [TBL] [Abstract][Full Text] [Related]
5. Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design. Chen G; Tang S; Yan H; Zhu X; Wang H; Ma L; Mao K; Yang C; Ran J Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772025 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754 [TBL] [Abstract][Full Text] [Related]
7. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900 [TBL] [Abstract][Full Text] [Related]
8. Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide. Sun X; Ye L; Liang H Soft Matter; 2021 Nov; 17(42):9708-9715. PubMed ID: 34642718 [TBL] [Abstract][Full Text] [Related]
9. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties. Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Shams Es-Haghi S; Weiss RA Gels; 2023 Dec; 10(1):. PubMed ID: 38247751 [TBL] [Abstract][Full Text] [Related]
11. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Mredha MTI; Kitamura N; Nonoyama T; Wada S; Goto K; Zhang X; Nakajima T; Kurokawa T; Takagi Y; Yasuda K; Gong JP Biomaterials; 2017 Jul; 132():85-95. PubMed ID: 28411451 [TBL] [Abstract][Full Text] [Related]
12. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels. Li C; Zhou X; Zhu L; Xu Z; Tan P; Wang H; Chen G; Zhou X Soft Matter; 2021 Feb; 17(6):1566-1573. PubMed ID: 33346314 [TBL] [Abstract][Full Text] [Related]
13. Photoregulated Gradient Structure and Programmable Mechanical Performances of Tough Hydrogels with a Hydrogen-Bond Network. Dai CF; Zhang XN; Du C; Frank A; Schmidt HW; Zheng Q; Wu ZL ACS Appl Mater Interfaces; 2020 Nov; 12(47):53376-53384. PubMed ID: 33170639 [TBL] [Abstract][Full Text] [Related]
14. Tough Double-Network Gels and Elastomers from the Nonprestretched First Network. Nakajima T; Ozaki Y; Namba R; Ota K; Maida Y; Matsuda T; Kurokawa T; Gong JP ACS Macro Lett; 2019 Nov; 8(11):1407-1412. PubMed ID: 35651176 [TBL] [Abstract][Full Text] [Related]
15. Double-network hydrogel and its potential biomedical application: A review. Nonoyama T; Gong JP Proc Inst Mech Eng H; 2015 Dec; 229(12):853-63. PubMed ID: 26614799 [TBL] [Abstract][Full Text] [Related]
16. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Isobe M; Okumura K Sci Rep; 2016 Apr; 6():24758. PubMed ID: 27117355 [TBL] [Abstract][Full Text] [Related]
17. Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method. Higa K; Kitamura N; Kurokawa T; Goto K; Wada S; Nonoyama T; Kanaya F; Sugahara K; Gong JP; Yasuda K Acta Biomater; 2016 Oct; 43():38-49. PubMed ID: 27427226 [TBL] [Abstract][Full Text] [Related]
18. The Toughness-Enhanced Atelocollagen Double-Network Gel for Biomaterials. Tsuyukubo A; Kubota R; Sato Y; Fujimoto I Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38276691 [TBL] [Abstract][Full Text] [Related]
19. Design of a Kirigami Structure with a Large Uniform Deformation Region. Taniyama H; Iwase E Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445722 [TBL] [Abstract][Full Text] [Related]
20. Preoperative vascular surgery model using a single polymer tough hydrogel with controllable elastic moduli. Ballance WC; Karthikeyan V; Oh I; Qin EC; Seo Y; Spearman-White T; Bashir R; Hu Y; Phillips H; Kong H Soft Matter; 2020 Sep; 16(34):8057-8068. PubMed ID: 32789332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]