These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36826412)
1. Exploring Supramolecular Interactions between the Extracellular-Matrix-Derived Minimalist Bioactive Peptide and Nanofibrillar Cellulose for the Development of an Advanced Biomolecular Scaffold. Kaur H; Sharma P; Pal VK; Sen S; Roy S ACS Biomater Sci Eng; 2023 Mar; 9(3):1422-1436. PubMed ID: 36826412 [TBL] [Abstract][Full Text] [Related]
2. Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds. Sharma P; Pal VK; Kaur H; Roy S Biomacromolecules; 2022 Jun; 23(6):2496-2511. PubMed ID: 35522599 [TBL] [Abstract][Full Text] [Related]
3. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour. Kaur H; Roy S J Mater Chem B; 2021 Aug; 9(29):5898-5913. PubMed ID: 34263278 [TBL] [Abstract][Full Text] [Related]
4. Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels. Jain R; Roy S ACS Biomater Sci Eng; 2020 May; 6(5):2832-2846. PubMed ID: 33463249 [TBL] [Abstract][Full Text] [Related]
5. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin. Sharma P; Roy S Nanoscale; 2023 Apr; 15(16):7537-7558. PubMed ID: 37022122 [TBL] [Abstract][Full Text] [Related]
6. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Bhattacharya M; Malinen MM; Lauren P; Lou YR; Kuisma SW; Kanninen L; Lille M; Corlu A; GuGuen-Guillouzo C; Ikkala O; Laukkanen A; Urtti A; Yliperttula M J Control Release; 2012 Dec; 164(3):291-8. PubMed ID: 22776290 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571 [TBL] [Abstract][Full Text] [Related]
9. Avidin-Conjugated Nanofibrillar Cellulose Hydrogel Functionalized with Biotinylated Fibronectin and Vitronectin Promotes 3D Culture of Fibroblasts. Leppiniemi J; Mutahir Z; Dulebo A; Mikkonen P; Nuopponen M; Turkki P; Hytönen VP Biomacromolecules; 2021 Oct; 22(10):4122-4137. PubMed ID: 34542997 [TBL] [Abstract][Full Text] [Related]
10. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Xu Y; Rothe R; Voigt D; Sayed A; Huang C; Hauser S; Lee PW; Cui M; Sáenz JP; Boccaccini AR; Zheng K; Pietzsch J; Zhang Y Acta Biomater; 2023 May; 162():211-225. PubMed ID: 36931420 [TBL] [Abstract][Full Text] [Related]
11. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle. Lim HJ; Mosley MC; Kurosu Y; Smith Callahan LA Acta Biomater; 2017 Jul; 56():153-160. PubMed ID: 27915022 [TBL] [Abstract][Full Text] [Related]
12. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Laurén P; Lou YR; Raki M; Urtti A; Bergström K; Yliperttula M Eur J Pharm Sci; 2014 Dec; 65():79-88. PubMed ID: 25245005 [TBL] [Abstract][Full Text] [Related]
13. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment. Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623 [TBL] [Abstract][Full Text] [Related]
15. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. Kim JE; Kim SH; Jung Y J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912 [TBL] [Abstract][Full Text] [Related]
16. Designing Cardin-Motif Peptide and Heparin-Based Multicomponent Advanced Bioactive Hydrogel Scaffolds to Control Cellular Behavior. Sen S; Sharma P; Pal VK; Roy S Biomacromolecules; 2023 Nov; 24(11):4923-4938. PubMed ID: 37909341 [TBL] [Abstract][Full Text] [Related]
17. Highly stable fibronectin-mimetic-peptide-based supramolecular hydrogel to accelerate corneal wound healing. Hu Y; Shi H; Ma X; Xia T; Wu Y; Chen L; Ren Z; Lei L; Jiang J; Wang J; Li X Acta Biomater; 2023 Mar; 159():128-139. PubMed ID: 36708851 [TBL] [Abstract][Full Text] [Related]
18. Cell-instructive starPEG-heparin-collagen composite matrices. Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298 [TBL] [Abstract][Full Text] [Related]
19. Hemocompatibility of Ca Basu A; Hong J; Ferraz N Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135 [TBL] [Abstract][Full Text] [Related]
20. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]