These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36826500)
1. Magnetic resonance shoulder imaging using deep learning-based algorithm. Liu J; Li W; Li Z; Yang J; Wang K; Cao X; Qin N; Xue K; Dai Y; Wu P; Qiu J Eur Radiol; 2023 Jul; 33(7):4864-4874. PubMed ID: 36826500 [TBL] [Abstract][Full Text] [Related]
2. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time. Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084 [TBL] [Abstract][Full Text] [Related]
3. An Investigation of 2D Spine Magnetic Resonance Imaging (MRI) with Compressed Sensing (CS). Qiu J; Liu J; Bi Z; Sun X; Gu Q; Hu G; Qin N Skeletal Radiol; 2022 Jun; 51(6):1273-1283. PubMed ID: 34854969 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based reconstruction enhances image quality and improves diagnosis in magnetic resonance imaging of the shoulder joint. Liu Z; Wen B; Wang Z; Wang K; Xie L; Kang Y; Tao Q; Wang W; Zhang Y; Cheng J; Zhang Y Quant Imaging Med Surg; 2024 Apr; 14(4):2840-2856. PubMed ID: 38617178 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI. Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546 [TBL] [Abstract][Full Text] [Related]
8. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction. Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950 [No Abstract] [Full Text] [Related]
9. Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction. Hahn S; Yi J; Lee HJ; Lee Y; Lee J; Wang X; Fung M Skeletal Radiol; 2023 Aug; 52(8):1545-1555. PubMed ID: 36943429 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning-based image quality enhancement of CT-like MR imaging in patients with suspected traumatic shoulder injury. Feuerriegel GC; Weiss K; Tu Van A; Leonhardt Y; Neumann J; Gassert FT; Haas Y; Schwarz M; Makowski MR; Woertler K; Karampinos DC; Gersing AS Eur J Radiol; 2024 Jan; 170():111246. PubMed ID: 38056345 [TBL] [Abstract][Full Text] [Related]
11. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences. Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI. Sun S; Tan ET; Mintz DN; Sahr M; Endo Y; Nguyen J; Lebel RM; Carrino JA; Sneag DB Eur Radiol; 2022 Sep; 32(9):6167-6177. PubMed ID: 35322280 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol. Herrmann J; Keller G; Gassenmaier S; Nickel D; Koerzdoerfer G; Mostapha M; Almansour H; Afat S; Othman AE Eur Radiol; 2022 Sep; 32(9):6215-6229. PubMed ID: 35389046 [TBL] [Abstract][Full Text] [Related]
14. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: A clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI. Sheng RF; Zheng LY; Jin KP; Sun W; Liao S; Zeng MS; Dai YM Magn Reson Imaging; 2021 Sep; 81():75-81. PubMed ID: 34147594 [TBL] [Abstract][Full Text] [Related]
15. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging. Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207 [TBL] [Abstract][Full Text] [Related]
16. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing. Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468 [TBL] [Abstract][Full Text] [Related]
17. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence. Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-accelerated T2WI: image quality, efficiency, and staging performance against BLADE T2WI for gastric cancer. Li Q; Xu WY; Sun NN; Feng QX; Hou YJ; Sang ZT; Zhu ZN; Hsu YC; Nickel D; Xu H; Zhang YD; Liu XS Abdom Radiol (NY); 2024 Aug; 49(8):2574-2584. PubMed ID: 38662208 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of image quality and interchangeability between standard and deep learning-reconstructed T2-weighted spine MRI. Lee S; Jung JY; Chung H; Lee HS; Nickel D; Lee J; Lee SY Magn Reson Imaging; 2024 Jun; 109():211-220. PubMed ID: 38513791 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of the application of deep learning-reconstructed ultra-fast respiratory-triggered T2-weighted imaging at 3 T in liver imaging. Liu K; Sun H; Wang X; Wen X; Yang J; Zhang X; Chen C; Zeng M Magn Reson Imaging; 2024 Jun; 109():27-33. PubMed ID: 38438094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]