These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36826607)

  • 1. Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore.
    Annunziata C; Fattahpour H; Fong D; Hadjiargyrou M; Sanaei P
    Bull Math Biol; 2023 Feb; 85(4):25. PubMed ID: 36826607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore.
    Sanaei P; Cummings LJ; Waters SL; Griffiths IM
    Biomech Model Mechanobiol; 2019 Jun; 18(3):589-605. PubMed ID: 30542833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models.
    Sandino C; Lacroix D
    Biomech Model Mechanobiol; 2011 Jul; 10(4):565-76. PubMed ID: 20865437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications.
    Aliabouzar M; Zhang GL; Sarkar K
    Biomed Mater; 2018 Aug; 13(5):055013. PubMed ID: 30018182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD].
    Sun K; Nian Z; Xu C; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling tissue growth within nonwoven scaffolds pores.
    Edwards SL; Church JS; Alexander DL; Russell SJ; Ingham E; Ramshaw JA; Werkmeister JA
    Tissue Eng Part C Methods; 2011 Feb; 17(2):123-30. PubMed ID: 20687775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of the cell proliferation in porous scaffold using model of effective pore.
    Makhaniok A; Haranava Y; Goranov V; Panseri S; Semerikhina S; Russo A; Marcacci M; Dediu V
    Biosystems; 2013 Dec; 114(3):227-37. PubMed ID: 24141144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor.
    Fan J; Jia X; Huang Y; Fu BM; Fan Y
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E210-8. PubMed ID: 23349107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering.
    Sun K; Li H; Li R; Nian Z; Li D; Xu C
    Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
    Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Model of Cartilage Regeneration Capturing the Interactions Between Cellular Dynamics and Porosity.
    Cassani S; Olson SD
    Bull Math Biol; 2020 Jan; 82(2):18. PubMed ID: 31970523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry.
    Zhao F; Melke J; Ito K; van Rietbergen B; Hofmann S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1965-1977. PubMed ID: 31201621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.
    Den Buijs JO; Dragomir-Daescu D; Ritman EL
    Ann Biomed Eng; 2009 Aug; 37(8):1601-12. PubMed ID: 19466547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.