BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 36826855)

  • 1. The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering.
    Mu Y; Du Z; Xiao L; Gao W; Crawford R; Xiao Y
    J Funct Biomater; 2023 Jan; 14(2):. PubMed ID: 36826855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches.
    Borciani G; Montalbano G; Baldini N; Cerqueni G; Vitale-Brovarone C; Ciapetti G
    Acta Biomater; 2020 May; 108():22-45. PubMed ID: 32251782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic Biomaterials for Regenerative Medicine.
    Brokesh AM; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5319-5344. PubMed ID: 31989815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine.
    Xu M; Su T; Jin X; Li Y; Yao Y; Liu K; Chen K; Lu F; He Y
    Acta Biomater; 2022 Oct; 151():106-117. PubMed ID: 35970482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Mineralization of Biomaterials Using Simulated Body Fluids for Bone Tissue Engineering and Regenerative Medicine.
    Shin K; Acri T; Geary S; Salem AK
    Tissue Eng Part A; 2017 Oct; 23(19-20):1169-1180. PubMed ID: 28463603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone remodelling in vitro: Where are we headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro.
    Kohli N; Ho S; Brown SJ; Sawadkar P; Sharma V; Snow M; García-Gareta E
    Bone; 2018 May; 110():38-46. PubMed ID: 29355746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.
    Mao L; Xia L; Chang J; Liu J; Jiang L; Wu C; Fang B
    Acta Biomater; 2017 Oct; 61():217-232. PubMed ID: 28807800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone structure and function.
    Buckwalter JA; Cooper RR
    Instr Course Lect; 1987; 36():27-48. PubMed ID: 3325555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on the Application of Nanotechnology in Bone Tissue Engineering.
    Griffin MF; Kalaskar DM; Seifalian A; Butler PE
    Open Orthop J; 2016; 10():836-848. PubMed ID: 28217209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralized Biomaterials Mediated Repair of Bone Defects Through Endogenous Cells.
    González Díaz EC; Shih YV; Nakasaki M; Liu M; Varghese S
    Tissue Eng Part A; 2018 Jul; 24(13-14):1148-1156. PubMed ID: 29368582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of osteoclasts in bone tissue engineering.
    Detsch R; Boccaccini AR
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1133-49. PubMed ID: 24478169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases.
    Kolb AD; Bussard KM
    Cancers (Basel); 2019 Jul; 11(7):. PubMed ID: 31330786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial functionalization with triple-helical peptides for tissue engineering.
    Malcor JD; Mallein-Gerin F
    Acta Biomater; 2022 Aug; 148():1-21. PubMed ID: 35675889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing.
    Zhang Y; Shu T; Wang S; Liu Z; Cheng Y; Li A; Pei D
    Front Bioeng Biotechnol; 2022; 10():911180. PubMed ID: 35651546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Distribution of Biomaterial Microenvironment pH and Its Modulatory Effect on Osteoclasts at the Early Stage of Bone Defect Regeneration.
    Liu W; Dan X; Lu WW; Zhao X; Ruan C; Wang T; Cui X; Zhai X; Ma Y; Wang D; Huang W; Pan H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9557-9572. PubMed ID: 30720276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone reconstruction: from bioceramics to tissue engineering.
    El-Ghannam A
    Expert Rev Med Devices; 2005 Jan; 2(1):87-101. PubMed ID: 16293032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation.
    Battiston KG; Labow RS; Simmons CA; Santerre JP
    Acta Biomater; 2015 Sep; 24():74-86. PubMed ID: 26093069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategies and applications of nacre-based biomaterials.
    Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J
    Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.