BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36827235)

  • 1. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery.
    Adly N; Teshima TF; Hassani H; Boustani GA; Weiß LJK; Cheng G; Alexander J; Wolfrum B
    Adv Healthc Mater; 2023 Jul; 12(17):e2202869. PubMed ID: 36827235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.
    Zips S; Grob L; Rinklin P; Terkan K; Adly NY; Weiß LJK; Mayer D; Wolfrum B
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32778-32786. PubMed ID: 31424902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet printing of silk nest arrays for cell hosting.
    Suntivich R; Drachuk I; Calabrese R; Kaplan DL; Tsukruk VV
    Biomacromolecules; 2014 Apr; 15(4):1428-35. PubMed ID: 24605757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible silk-fibroin-based microelectrode arrays for high-resolution neural recording.
    Ding J; Zeng M; Tian Y; Chen Z; Qiao Z; Xiao Z; Wu C; Wei D; Sun J; Fan H
    Mater Horiz; 2024 Jun; ():. PubMed ID: 38919990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological investigation of intact retina with soft printed organic neural interface.
    Vėbraitė I; David-Pur M; Rand D; Głowacki ED; Hanein Y
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34736225
    [No Abstract]   [Full Text] [Related]  

  • 6. Development of robust, ultra-smooth, flexible and transparent regenerated silk composite films for bio-integrated electronic device applications.
    Gunapu DVSK; Prasad YB; Mudigunda VS; Yasam P; Rengan AK; Korla R; Vanjari SRK
    Int J Biol Macromol; 2021 Apr; 176():498-509. PubMed ID: 33571588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet-Printed and Electroplated 3D Electrodes for Recording Extracellular Signals in Cell Culture.
    Grob L; Rinklin P; Zips S; Mayer D; Weidlich S; Terkan K; Weiß LJK; Adly N; Offenhäusser A; Wolfrum B
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing.
    Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X
    Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing.
    Qi D; Liu Z; Liu Y; Jiang Y; Leow WR; Pal M; Pan S; Yang H; Wang Y; Zhang X; Yu J; Li B; Yu Z; Wang W; Chen X
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film.
    Kim Y; Alimperti S; Choi P; Noh M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings.
    Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A
    Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording.
    Liu Y; McGuire AF; Lou HY; Li TL; Tok JB; Cui B; Bao Z
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11718-11723. PubMed ID: 30377271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording.
    Ding J; Chen Z; Liu X; Tian Y; Jiang J; Qiao Z; Zhang Y; Xiao Z; Wei D; Sun J; Luo F; Zhou L; Fan H
    Mater Horiz; 2022 Aug; 9(8):2215-2225. PubMed ID: 35723211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasoft Silicone Gel as a Biomimetic Passivation Layer in Inkjet-Printed 3D MEA Devices.
    Yamamoto H; Grob L; Sumi T; Oiwa K; Hirano-Iwata A; Wolfrum B
    Adv Biosyst; 2019 Sep; 3(9):e1900130. PubMed ID: 32648655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost in vitro electrophysiology.
    Garma LD; Ferrari LM; Scognamiglio P; Greco F; Santoro F
    Lab Chip; 2019 Nov; 19(22):3776-3786. PubMed ID: 31616896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording.
    Murakami T; Yada N; Yoshida S
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling.
    Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M
    Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.