BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36827235)

  • 21. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes.
    Dionigi C; Posati T; Benfenati V; Sagnella A; Pistone A; Bonetti S; Ruani G; Dinelli F; Padeletti G; Zamboni R; Muccini M
    J Mater Chem B; 2014 Mar; 2(10):1424-1431. PubMed ID: 32261458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and Characterization of 3D Printed, 3D Microelectrode Arrays for Interfacing with a Peripheral Nerve-on-a-Chip.
    Kundu A; McCoy L; Azim N; Nguyen H; Didier CM; Ausaf T; Sharma AD; Curley JL; Moore MJ; Rajaraman S
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3018-3029. PubMed ID: 34275292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery.
    Lee J; Jang EH; Kim JH; Park S; Kang Y; Park S; Lee K; Kim JH; Youn YN; Ryu W
    J Control Release; 2021 Dec; 340():125-135. PubMed ID: 34688718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A patterned polystyrene-based microelectrode array for in vitro neuronal recordings.
    Hammack A; Rihani RT; Black BJ; Pancrazio JJ; Gnade BE
    Biomed Microdevices; 2018 Jun; 20(2):48. PubMed ID: 29909439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive Inkjet Printing and Propulsion Analysis of Silk-based Self-propelled Micro-stirrers.
    Gregory DA; Kumar P; Jimenez-Franco A; Zhang Y; Zhang Y; Ebbens SJ; Zhao X
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of makerspace microfabrication techniques and materials for the realization of planar, 3D printed microelectrode arrays in under four days.
    Kundu A; Nattoo C; Fremgen S; Springer S; Ausaf T; Rajaraman S
    RSC Adv; 2019 Mar; 9(16):8949-8963. PubMed ID: 35517709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording.
    Deku F; Cohen Y; Joshi-Imre A; Kanneganti A; Gardner TJ; Cogan SF
    J Neural Eng; 2018 Feb; 15(1):016007. PubMed ID: 28952963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture.
    Zhuang A; Huang X; Fan S; Yao X; Zhu B; Zhang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):123-137. PubMed ID: 34935351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues.
    González C; Rodríguez M
    J Neurosci Methods; 1997 Apr; 72(2):189-95. PubMed ID: 9133584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of electrically conductive porous silk fibroin/carbon nanofiber scaffolds.
    Tufan Y; Öztatlı H; Garipcan B; Ercan B
    Biomed Mater; 2021 Feb; 16(2):025027. PubMed ID: 33091884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering.
    Liang Y; Mitriashkin A; Lim TT; Goh JC
    Biomaterials; 2021 Sep; 276():121008. PubMed ID: 34265591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.