BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 36827371)

  • 1. Xeno interactions between MHC-I proteins and molecular chaperones enable ligand exchange on a broad repertoire of HLA allotypes.
    Sun Y; Papadaki GF; Devlin CA; Danon JN; Young MC; Winters TJ; Burslem GM; Procko E; Sgourakis NG
    Sci Adv; 2023 Feb; 9(8):eade7151. PubMed ID: 36827371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of chaperone interactions on MHC-I for folding and antigen repertoire selection.
    McShan AC; Devlin CA; Overall SA; Park J; Toor JS; Moschidi D; Flores-Solis D; Choi H; Tripathi S; Procko E; Sgourakis NG
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25602-25613. PubMed ID: 31796585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Polymorphisms in HLA Class I Molecules Govern Their Susceptibility to Peptide Editing by TAPBPR.
    Ilca FT; Drexhage LZ; Brewin G; Peacock S; Boyle LH
    Cell Rep; 2019 Nov; 29(6):1621-1632.e3. PubMed ID: 31693900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor.
    Sagert L; Hennig F; Thomas C; Tampé R
    Elife; 2020 Mar; 9():. PubMed ID: 32167472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap.
    McShan AC; Devlin CA; Morozov GI; Overall SA; Moschidi D; Akella N; Procko E; Sgourakis NG
    Nat Commun; 2021 May; 12(1):3174. PubMed ID: 34039964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules.
    McShan AC; Devlin CA; Papadaki GF; Sun Y; Green AI; Morozov GI; Burslem GM; Procko E; Sgourakis NG
    Nat Chem Biol; 2022 Aug; 18(8):859-868. PubMed ID: 35725941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst.
    Hermann C; van Hateren A; Trautwein N; Neerincx A; Duriez PJ; Stevanović S; Trowsdale J; Deane JE; Elliott T; Boyle LH
    Elife; 2015 Oct; 4():. PubMed ID: 26439010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reanalysis of Immunopeptidomics Datasets Provides Mechanistic Insight into TAPBPR-Mediated Peptide Editing on HLA-A, -B and -C Molecules.
    Altenburg AF; Morley JL; Bauer J; Walz JS; Boyle LH
    Wellcome Open Res; 2024; 9():113. PubMed ID: 38800518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.
    McShan AC; Natarajan K; Kumirov VK; Flores-Solis D; Jiang J; Badstübner M; Toor JS; Bagshaw CR; Kovrigin EL; Margulies DH; Sgourakis NG
    Nat Chem Biol; 2018 Aug; 14(8):811-820. PubMed ID: 29988068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of MHC I protein dynamics in tapasin and TAPBPR-assisted immunopeptidome editing.
    van Hateren A; Elliott T
    Curr Opin Immunol; 2021 Jun; 70():138-143. PubMed ID: 34265495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Chicken Tapasin ortholog can chaperone empty HLA-B∗37:01 molecules independent of other peptide-loading components.
    Papadaki GF; Woodward CH; Young MC; Winters TJ; Burslem GM; Sgourakis NG
    J Biol Chem; 2023 Oct; 299(10):105136. PubMed ID: 37543367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TAPBPR mediates peptide dissociation from MHC class I using a leucine lever.
    Ilca FT; Neerincx A; Hermann C; Marcu A; Stevanović S; Deane JE; Boyle LH
    Elife; 2018 Nov; 7():. PubMed ID: 30484775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of soluble pMHC-I molecules in mammalian cells using the molecular chaperone TAPBPR.
    O'Rourke SM; Morozov GI; Roberts JT; Barb AW; Sgourakis NG
    Protein Eng Des Sel; 2019 Dec; 32(12):525-532. PubMed ID: 32725167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I.
    Sagert L; Winter C; Ruppert I; Zehetmaier M; Thomas C; Tampé R
    Elife; 2023 Jun; 12():. PubMed ID: 37345806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway.
    Natarajan K; Jiang J; Margulies DH
    Crit Rev Biochem Mol Biol; 2019 Apr; 54(2):164-173. PubMed ID: 31084439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of peptide loading into major histocompatibility complex class I molecules chaperoned by TAPBPR.
    Xu H; Song K; Da LT
    Phys Chem Chem Phys; 2022 May; 24(20):12397-12409. PubMed ID: 35575131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential interaction of MHC class I with TAPBPR in the absence of glycosylation.
    Neerincx A; Boyle LH
    Mol Immunol; 2019 Sep; 113():58-66. PubMed ID: 30077416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualising tapasin- and TAPBPR-assisted editing of major histocompatibility complex class-I immunopeptidomes.
    van Hateren A; Elliott T
    Curr Opin Immunol; 2023 Aug; 83():102340. PubMed ID: 37245412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glycosylation status of MHC class I molecules impacts their interactions with TAPBPR.
    Ilca FT; Boyle LH
    Mol Immunol; 2021 Nov; 139():168-176. PubMed ID: 34543843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing.
    Thomas C; Tampé R
    Science; 2017 Nov; 358(6366):1060-1064. PubMed ID: 29025996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.