These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 36827390)
1. A computational offloading optimization scheme based on deep reinforcement learning in perceptual network. Xing Y; Ye T; Ullah S; Waqas M; Alasmary H; Liu Z PLoS One; 2023; 18(2):e0280468. PubMed ID: 36827390 [TBL] [Abstract][Full Text] [Related]
2. Joint Optimization for Mobile Edge Computing-Enabled Blockchain Systems: A Deep Reinforcement Learning Approach. Hu Z; Gao H; Wang T; Han D; Lu Y Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590907 [TBL] [Abstract][Full Text] [Related]
3. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach. Shi W; Chen L; Zhu X Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688051 [TBL] [Abstract][Full Text] [Related]
4. Intelligent Rapid Adaptive Offloading Algorithm for Computational Services in Dynamic Internet of Things System. Li X; Qin Y; Zhou H; Cheng Y; Zhang Z; Ai Z Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382708 [TBL] [Abstract][Full Text] [Related]
5. Multi-User Computation Offloading and Resource Allocation Algorithm in a Vehicular Edge Network. Liu X; Zheng J; Zhang M; Li Y; Wang R; He Y Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610415 [TBL] [Abstract][Full Text] [Related]
6. A decision-making mechanism for task offloading using learning automata and deep learning in mobile edge networks. Tan X; Zhao D; Wang M; Wang X; Wang X; Liu W; Ghobaei-Arani M Heliyon; 2024 Jan; 10(1):e23651. PubMed ID: 38192752 [TBL] [Abstract][Full Text] [Related]
7. Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing. Li S; Hu X; Du Y Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640820 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive review on internet of things task offloading in multi-access edge computing. Dayong W; Bin Abu Bakar K; Isyaku B; Abdalla Elfadil Eisa T; Abdelmaboud A Heliyon; 2024 May; 10(9):e29916. PubMed ID: 38698997 [TBL] [Abstract][Full Text] [Related]
9. Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network. Chen X; Liu G Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808234 [TBL] [Abstract][Full Text] [Related]
10. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing. Ma X; Lin C; Zhang H; Liu J Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914104 [TBL] [Abstract][Full Text] [Related]
11. Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning. Xiao S; Wang S; Zhuang J; Wang T; Liu J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577265 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks. Yang S; Lee G; Huang L Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684707 [TBL] [Abstract][Full Text] [Related]
13. Task Offloading Strategy for Unmanned Aerial Vehicle Power Inspection Based on Deep Reinforcement Learning. Zhuang W; Xing F; Lu Y Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610282 [TBL] [Abstract][Full Text] [Related]
14. Advanced Deep Learning for Resource Allocation and Security Aware Data Offloading in Industrial Mobile Edge Computing. Elgendy IA; Muthanna A; Hammoudeh M; Shaiba H; Unal D; Khayyat M Big Data; 2021 Aug; 9(4):265-278. PubMed ID: 33656352 [TBL] [Abstract][Full Text] [Related]
15. Energy-Efficient Collaborative Task ComputationOffloading in Cloud-Assisted Edge Computingfor IoT Sensors. Liu F; Huang Z; Wang L Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836717 [TBL] [Abstract][Full Text] [Related]
16. Distributed DRL-Based Computation Offloading Scheme for Improving QoE in Edge Computing Environments. Park J; Chung K Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112505 [TBL] [Abstract][Full Text] [Related]
17. An Efficient Computation Offloading Strategy with Mobile Edge Computing for IoT. Fang J; Shi J; Lu S; Zhang M; Ye Z Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33671142 [TBL] [Abstract][Full Text] [Related]
18. Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints. He H; Yang X; Mi X; Shen H; Liao X Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204838 [TBL] [Abstract][Full Text] [Related]
19. Deep reinforcement learning based offloading decision algorithm for vehicular edge computing. Hu X; Huang Y PeerJ Comput Sci; 2022; 8():e1126. PubMed ID: 36262145 [TBL] [Abstract][Full Text] [Related]
20. Efficient Multiuser Computation for Mobile-Edge Computing in IoT Application Using Optimization Algorithm. Hasanin T; Alsobhi A; Khadidos A; Qahmash A; Khadidos A; Ogunmola GA Appl Bionics Biomech; 2021; 2021():9014559. PubMed ID: 34804200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]