These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36827399)

  • 1. A multi-scale approach to detecting standing dead trees in UAV RGB images based on improved faster R-CNN.
    Jiang X; Wu Z; Han S; Yan H; Zhou B; Li J
    PLoS One; 2023; 18(2):e0281084. PubMed ID: 36827399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Pine Wilt Nematode from Drone Images Using UAV.
    Sun Z; Ibrayim M; Hamdulla A
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for precisely thinning planning in a managed pure Chinese fir forest based on UAV remote sensing.
    Zhou P; Sun Z; Zhang X; Wang Y
    Sci Total Environ; 2023 Feb; 860():160482. PubMed ID: 36464045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable identification and mapping of trees using UAV RGB image and deep learning.
    Onishi M; Ise T
    Sci Rep; 2021 Jan; 11(1):903. PubMed ID: 33441689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wildfire Smoke Detection System Using Unmanned Aerial Vehicle Images Based on the Optimized YOLOv5.
    Mukhiddinov M; Abdusalomov AB; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; PiƩgay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Network Framework on Simultaneous Road Segmentation and Vehicle Detection for UAV Aerial Traffic Images.
    Xiao M; Min W; Yang C; Song Y
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV.
    Shamta I; Demir BE
    PLoS One; 2024; 19(3):e0299058. PubMed ID: 38470887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection.
    Xu W; Zhang C; Wang Q; Dai P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRE-YOLOv8: An Improved UAV Object Detection Model Utilizing Swin Transformer and RE-FPN.
    Li J; Zhang J; Shao Y; Liu F
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of UAV and Raspberry Pi 4B: Airspace detection of red imported fire ant nests using an improved YOLOv4 model.
    Liu X; Xing Z; Liu H; Peng H; Xu H; Yuan J; Gou Z
    Math Biosci Eng; 2022 Sep; 19(12):13582-13606. PubMed ID: 36654059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pine wilt disease detection algorithm based on improved YOLOv5.
    Du Z; Wu S; Wen Q; Zheng X; Lin S; Wu D
    Front Plant Sci; 2024; 15():1302361. PubMed ID: 38699534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Unmanned Aerial Vehicle Red-Green-Blue Images for Detecting Needle Pests: A Case Study with
    Bai L; Huang X; Dashzebeg G; Ariunaa M; Yin S; Bao Y; Bao G; Tong S; Dorjsuren A; Davaadorj E
    Insects; 2024 Mar; 15(3):. PubMed ID: 38535368
    [No Abstract]   [Full Text] [Related]  

  • 16. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Segmentation of Standing Trees from Forest Images Based on Deep Learning.
    Shi L; Wang G; Mo L; Yi X; Wu X; Wu P
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Deep Learning Mechanism for the Recognition of Olive Trees in Jouf Region.
    Alshammari HH; Shahin OR
    Comput Intell Neurosci; 2022; 2022():9249530. PubMed ID: 36093507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of AI-assisted techniques for epiphyte plant monitoring and identification from drone images.
    V V SV; V S; Sivanpillai R; Brown GK
    J Environ Manage; 2024 Sep; 367():121996. PubMed ID: 39088905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.