These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36827570)

  • 1. Mott Quantum Critical Points at Finite Doping.
    Chatzieleftheriou M; Kowalski A; Berović M; Amaricci A; Capone M; De Leo L; Sangiovanni G; De' Medici L
    Phys Rev Lett; 2023 Feb; 130(6):066401. PubMed ID: 36827570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge and spin degrees of freedom in strongly correlated systems: Mott states opposite Hund's metals.
    Novoselov DY; Korotin DM; Shorikov AO; Anisimov VI
    J Phys Condens Matter; 2020 May; 32(23):235601. PubMed ID: 32053796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground state of a three-band Hubbard model with Hund's coupling: Janus-faced behavior in presence of magnetic order.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34298529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mott transition, magnetic and orbital orders in the ground state of the two-band Hubbard model using variational slave-spin mean field formalism.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34710854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators.
    Isidori A; Berović M; Fanfarillo L; De' Medici L; Fabrizio M; Capone M
    Phys Rev Lett; 2019 May; 122(18):186401. PubMed ID: 31144864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1-xFe2-ySe2.
    Yu R; Si Q
    Phys Rev Lett; 2013 Apr; 110(14):146402. PubMed ID: 25167013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device.
    Kawasugi Y; Seki K; Tajima S; Pu J; Takenobu T; Yunoki S; Yamamoto HM; Kato R
    Sci Adv; 2019 May; 5(5):eaav7282. PubMed ID: 31093527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates.
    Hussey NE; Buhot J; Licciardello S
    Rep Prog Phys; 2018 May; 81(5):052501. PubMed ID: 29353812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Properties of the Infinite-Layer La_{1-x}Sr_{x}NiO_{2} and Hidden Hund's Physics.
    Kang CJ; Kotliar G
    Phys Rev Lett; 2021 Mar; 126(12):127401. PubMed ID: 33834805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles.
    Nomura Y; Sakai S; Capone M; Arita R
    Sci Adv; 2015 Aug; 1(7):e1500568. PubMed ID: 26601242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control over a Wide Phase Diagram of 2D Correlated Electrons by Surface Doping; K/1
    Jung J; Jin KH; Kim J; Yeom HW
    Nano Lett; 2023 Sep; 23(17):8029-8034. PubMed ID: 37651727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconducting fluctuations in organic molecular metals enhanced by Mott criticality.
    Nam MS; Mézière C; Batail P; Zorina L; Simonov S; Ardavan A
    Sci Rep; 2013 Dec; 3():3390. PubMed ID: 24292063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2013 Jan; 110(2):027002. PubMed ID: 23383933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Mott physics as a key to iron superconductors.
    de' Medici L; Giovannetti G; Capone M
    Phys Rev Lett; 2014 May; 112(17):177001. PubMed ID: 24836267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite doping signatures of the Mott transition in the two-dimensional Hubbard model.
    Sordi G; Haule K; Tremblay AM
    Phys Rev Lett; 2010 Jun; 104(22):226402. PubMed ID: 20867185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum phase transition in the two-band hubbard model.
    Costi TA; Liebsch A
    Phys Rev Lett; 2007 Dec; 99(23):236404. PubMed ID: 18233389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated insulated phase suggests bond order between band and mott insulators in two dimensions.
    Kancharla SS; Dagotto E
    Phys Rev Lett; 2007 Jan; 98(1):016402. PubMed ID: 17358494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning emergent magnetism in a Hund's impurity.
    Khajetoorians AA; Valentyuk M; Steinbrecher M; Schlenk T; Shick A; Kolorenc J; Lichtenstein AI; Wehling TO; Wiesendanger R; Wiebe J
    Nat Nanotechnol; 2015 Nov; 10(11):958-64. PubMed ID: 26344182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.