These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36827598)

  • 1. Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks.
    Winston CN; Mastrovito D; Shea-Brown E; Mihalas S
    Neural Comput; 2023 Mar; 35(4):555-592. PubMed ID: 36827598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of network connectivity from temporally binned spike trains.
    Vareberg AD; Bok I; Eizadi J; Ren X; Hai A
    J Neurosci Methods; 2024 Apr; 404():110073. PubMed ID: 38309313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks.
    Zenke F; Vogels TP
    Neural Comput; 2021 Mar; 33(4):899-925. PubMed ID: 33513328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.
    Xu Y; Zeng X; Han L; Yang J
    Neural Netw; 2013 Jul; 43():99-113. PubMed ID: 23500504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of synaptic dynamics and heterogeneity in neuronal learning of temporal code.
    Rotman Z; Klyachko VA
    J Neurophysiol; 2013 Nov; 110(10):2275-86. PubMed ID: 23926043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-timing error backpropagation in theta neuron networks.
    McKennoch S; Voegtlin T; Bushnell L
    Neural Comput; 2009 Jan; 21(1):9-45. PubMed ID: 19431278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trainable Reference Spikes Improve Temporal Information Processing of SNNs With Supervised Learning.
    Wang Z; Cruz L
    Neural Comput; 2024 Sep; 36(10):2136-2169. PubMed ID: 39177970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Spiking Neuron: Fractional Leaky Integrate-and-Fire Circuit Described with Dendritic Fractal Model.
    Deng Y; Liu B; Huang Z; Liu X; He S; Li Q; Guo D
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1375-1386. PubMed ID: 36315548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation.
    Comsa IM; Potempa K; Versari L; Fischbacher T; Gesmundo A; Alakuijala J
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5939-5952. PubMed ID: 33900924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic Learning With Augmented Spikes.
    Yu Q; Song S; Ma C; Pan L; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1134-1146. PubMed ID: 33471768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active intrinsic conductances in recurrent networks allow for long-lasting transients and sustained activity with realistic firing rates as well as robust plasticity.
    Aksoy T; Shouval HZ
    J Comput Neurosci; 2022 Feb; 50(1):121-132. PubMed ID: 34601665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.