These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36827642)

  • 1. Volumetric Printing of Thiol-Ene Photo-Cross-Linkable Poly(ε-caprolactone): A Tunable Material Platform Serving Biomedical Applications.
    Thijssen Q; Quaak A; Toombs J; De Vlieghere E; Parmentier L; Taylor H; Van Vlierberghe S
    Adv Mater; 2023 May; 35(19):e2210136. PubMed ID: 36827642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Tunable Thiol-Ene Photoresins for Volumetric Additive Manufacturing.
    Cook CC; Fong EJ; Schwartz JJ; Porcincula DH; Kaczmarek AC; Oakdale JS; Moran BD; Champley KM; Rackson CM; Muralidharan A; McLeod RR; Shusteff M
    Adv Mater; 2020 Nov; 32(47):e2003376. PubMed ID: 33002275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tough Photo-Cross-Linked PCL-Hydroxyapatite Composites for Bone Tissue Engineering.
    Thijssen Q; Cornelis K; Alkaissy R; Locs J; Damme LV; Schaubroeck D; Willaert R; Snelling S; Mouthuy PA; Van Vlierberghe S
    Biomacromolecules; 2022 Mar; 23(3):1366-1375. PubMed ID: 35147420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosol-Derived Biodegradable Inks with Tunable Properties for 3D Printing.
    Cohen J; Bektas CK; Mullaghy A; Perera MM; Gormley AJ; Kohn J
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4454-4462. PubMed ID: 34396772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry.
    Laurano R; Boffito M; Cassino C; Midei L; Pappalardo R; Chiono V; Ciardelli G
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications.
    Cai Z; Wan Y; Becker ML; Long YZ; Dean D
    Biomaterials; 2019 Jul; 208():45-71. PubMed ID: 30991217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications.
    Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs.
    Kamaraj M; Sreevani G; Prabusankar G; Rath SN
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112478. PubMed ID: 34857263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-Printed Biodegradable Polymeric Vascular Grafts.
    Melchiorri AJ; Hibino N; Best CA; Yi T; Lee YU; Kraynak CA; Kimerer LK; Krieger A; Kim P; Breuer CK; Fisher JP
    Adv Healthc Mater; 2016 Feb; 5(3):319-325. PubMed ID: 26627057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate modification via click chemistry for biomedical applications.
    Deng Y; Shavandi A; Okoro OV; Nie L
    Carbohydr Polym; 2021 Oct; 270():118360. PubMed ID: 34364605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient versus End-Capped Degradable Polymer Sequence Variations Result in Stiff to Elastic Photochemically 3D-Printed Substrates.
    Shin Y; Becker ML
    Biomacromolecules; 2022 May; 23(5):2106-2115. PubMed ID: 35471033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Customized Fading Scaffolds: Strong Polyorthoester Networks via Thiol-Ene Cross-linking for Cytocompatible Surface-Eroding Materials in 3D Printing.
    Herwig G; Pérez-Madrigal MM; Dove AP
    Biomacromolecules; 2021 Apr; 22(4):1472-1483. PubMed ID: 33683869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications.
    Arif ZU; Khalid MY; Noroozi R; Sadeghianmaryan A; Jalalvand M; Hossain M
    Int J Biol Macromol; 2022 Oct; 218():930-968. PubMed ID: 35896130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo.
    Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM
    Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.