These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36827709)
1. Continuous blood pressure monitoring by photoplethysmography - signal preprocessing requirements based on blood flow modelling. Poliński A Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36827709 [No Abstract] [Full Text] [Related]
2. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring. Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912 [TBL] [Abstract][Full Text] [Related]
3. Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions. Pour Ebrahim M; Heydari F; Wu T; Walker K; Joe K; Redoute JM; Yuce MR Sci Rep; 2019 Nov; 9(1):16346. PubMed ID: 31705001 [TBL] [Abstract][Full Text] [Related]
4. The Effects of Filtering PPG Signal on Pulse Arrival Time-Systolic Blood Pressure Correlation. Wang W; Marefat F; Mohseni P; Kilgore K; Najafizadeh L Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():674-677. PubMed ID: 36086297 [TBL] [Abstract][Full Text] [Related]
5. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference. Gao M; Olivier NB; Mukkamala R Physiol Rep; 2016 May; 4(10):. PubMed ID: 27233300 [TBL] [Abstract][Full Text] [Related]
6. Pulse arrival time as a surrogate of blood pressure. Finnegan E; Davidson S; Harford M; Jorge J; Watkinson P; Young D; Tarassenko L; Villarroel M Sci Rep; 2021 Nov; 11(1):22767. PubMed ID: 34815419 [TBL] [Abstract][Full Text] [Related]
7. On the use of fractional calculus to improve the pulse arrival time (PAT) detection when using photoplethysmography (PPG) and electrocardiography (ECG) signals. Mohammadpoor Faskhodi M; A Garcia-Gonzalez M; Fernandez-Chimeno M; Guede-Fernández F; Mateu-Mateus M; Capdevila L; J Ramos-Castro J PLoS One; 2024; 19(2):e0298354. PubMed ID: 38363753 [TBL] [Abstract][Full Text] [Related]
8. Conventional pulse transit times as markers of blood pressure changes in humans. Block RC; Yavarimanesh M; Natarajan K; Carek A; Mousavi A; Chandrasekhar A; Kim CS; Zhu J; Schifitto G; Mestha LK; Inan OT; Hahn JO; Mukkamala R Sci Rep; 2020 Oct; 10(1):16373. PubMed ID: 33009445 [TBL] [Abstract][Full Text] [Related]
9. Accuracy of heart rate variability estimation by photoplethysmography using an smartphone: Processing optimization and fiducial point selection. Ferrer-Mileo V; Guede-Fernandez F; Fernandez-Chimeno M; Ramos-Castro J; Garcia-Gonzalez MA Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5700-3. PubMed ID: 26737586 [TBL] [Abstract][Full Text] [Related]
10. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals. Peralta E; Lazaro J; Bailon R; Marozas V; Gil E Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123 [TBL] [Abstract][Full Text] [Related]
11. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography. Mejía-Mejía E; May JM; Kyriacou PA Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373 [TBL] [Abstract][Full Text] [Related]
12. Impact of the PPG Sampling Rate in the Pulse Rate Variability Indices Evaluating Several Fiducial Points in Different Pulse Waveforms. Pelaez-Coca MD; Hernando A; Lazaro J; Gil E IEEE J Biomed Health Inform; 2022 Feb; 26(2):539-549. PubMed ID: 34310329 [TBL] [Abstract][Full Text] [Related]
13. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG. Liu J; Li Y; Ding XR; Dai WX; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652 [TBL] [Abstract][Full Text] [Related]
14. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms. Zuhair Sameen A; Jaafar R; Zahedi E; Kok Beng G J Med Eng Technol; 2022 Oct; 46(7):567-589. PubMed ID: 35801952 [TBL] [Abstract][Full Text] [Related]
15. BioWatch - a wrist watch based signal acquisition system for physiological signals including blood pressure. Thomas SS; Nathan V; Chengzhi Zong ; Akinbola E; Aroul AL; Philipose L; Soundarapandian K; Xiangrong Shi ; Jafari R Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2286-9. PubMed ID: 25570444 [TBL] [Abstract][Full Text] [Related]
16. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates. Feng J; Huang Z; Zhou C; Ye X Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173 [TBL] [Abstract][Full Text] [Related]
17. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization. Liu H; Allen J; Khalid SG; Chen F; Zheng D Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855 [No Abstract] [Full Text] [Related]
18. Increasing accuracy of pulse arrival time estimation in low frequency recordings. Montree RJH; Peri E; Haakma R; Dekker LRC; Vullings R Physiol Meas; 2024 Mar; 45(3):. PubMed ID: 38387047 [No Abstract] [Full Text] [Related]
19. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Lee KJ; Roh J; Cho D; Hyeong J; Kim S Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708934 [TBL] [Abstract][Full Text] [Related]
20. Slope Transit Time (STT): A Pulse Transit Time Proxy requiring Only a Single Signal Fiducial Point. Addison PS IEEE Trans Biomed Eng; 2016 Nov; 63(11):2441-2444. PubMed ID: 26890527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]