BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36827723)

  • 21. A Tunable Porous β-Cyclodextrin Polymer Platform to Understand and Improve Anionic PFAS Removal.
    Wang R; Lin ZW; Klemes MJ; Ateia M; Trang B; Wang J; Ching C; Helbling DE; Dichtel WR
    ACS Cent Sci; 2022 May; 8(5):663-669. PubMed ID: 35647288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imparting Selective Fluorophilic Interactions in Redox Copolymers for the Electrochemically Mediated Capture of Short-Chain Perfluoroalkyl Substances.
    Román Santiago A; Yin S; Elbert J; Lee J; Shukla D; Su X
    J Am Chem Soc; 2023 May; 145(17):9508-9519. PubMed ID: 36944079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations.
    Porseryd T; Larsson J; Lindman J; Malmström E; Smolarz K; Grahn M; Dinnétz P
    Mar Pollut Bull; 2024 May; 202():116369. PubMed ID: 38640762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perfluorobutanoic Acid (PFBA) Induces a Non-Enzymatic Oxidative Stress Response in Soybean (
    Omagamre EW; Mansourian Y; Liles D; Tolosa T; Zebelo SA; Pitula JS
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of Nanobubbles for PFAS Adsorption on Graphene and OH- and NH
    Jiang X; Wang W; Yu G; Deng S
    Environ Sci Technol; 2021 Oct; 55(19):13254-13263. PubMed ID: 34555893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Addressing Short-Chain PFAS Contamination in Water with Nanofibrous Adsorbent/Filter Material from Electrospinning.
    Mantripragada S; Obare SO; Zhang L
    Acc Chem Res; 2023 Jun; 56(11):1271-1278. PubMed ID: 36633899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks.
    Li R; Alomari S; Islamoglu T; Farha OK; Fernando S; Thagard SM; Holsen TM; Wriedt M
    Environ Sci Technol; 2021 Nov; 55(22):15162-15171. PubMed ID: 34714637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple interactions steered high affinity toward PFAS on ultrathin layered rare-earth hydroxide nanosheets: Remediation performance and molecular-level insights.
    Tan X; Jiang Z; Ding W; Zhang M; Huang Y
    Water Res; 2023 Feb; 230():119558. PubMed ID: 36603309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design of lanthanide nano periodic mesoporous organosilicas (Ln-nano-PMOs) for near-infrared emission.
    Liu W; Kaczmarek AM; Folens K; Du Laing G; Van Der Voort P; Van Deun R
    Dalton Trans; 2021 Mar; 50(8):2774-2781. PubMed ID: 33571350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices.
    Wu C; Klemes MJ; Trang B; Dichtel WR; Helbling DE
    Water Res; 2020 Sep; 182():115950. PubMed ID: 32604026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters.
    Dixit F; Barbeau B; Mostafavi SG; Mohseni M
    Water Res; 2020 Sep; 183():116098. PubMed ID: 32663697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar.
    Zhang D; He Q; Wang M; Zhang W; Liang Y
    Environ Technol; 2021 May; 42(12):1798-1809. PubMed ID: 31625466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of nanomaterials for the removal of per- and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities.
    Yin S; Villagrán D
    Sci Total Environ; 2022 Jul; 831():154939. PubMed ID: 35367257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique.
    Liu Y; Shao LX; Yu WJ; Bao J; Li TY; Hu XM; Zhao X
    Chemosphere; 2022 Nov; 307(Pt 2):135874. PubMed ID: 35926750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials.
    Kaczmarek AM; Van Der Voort P
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects.
    Podder A; Sadmani AHMA; Reinhart D; Chang NB; Goel R
    J Hazard Mater; 2021 Oct; 419():126361. PubMed ID: 34157464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion exchange removal and resin regeneration to treat per- and polyfluoroalkyl ether acids and other emerging PFAS in drinking water.
    Liu YL; Sun M
    Water Res; 2021 Dec; 207():117781. PubMed ID: 34731662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical method interferences for perfluoropentanoic acid (PFPeA) and perfluorobutanoic acid (PFBA) in biological and environmental samples.
    Bangma J; McCord J; Giffard N; Buckman K; Petali J; Chen C; Amparo D; Turpin B; Morrison G; Strynar M
    Chemosphere; 2023 Feb; 315():137722. PubMed ID: 36592832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance.
    Pauletto PS; Bandosz TJ
    J Hazard Mater; 2022 Mar; 425():127810. PubMed ID: 34872038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coexisting ions and long-chain per- and polyfluoroalkyl substances (PFAS) inhibit the adsorption of short-chain PFAS by granular activated carbon.
    Zhang Y; Thomas A; Apul O; Venkatesan AK
    J Hazard Mater; 2023 Oct; 460():132378. PubMed ID: 37643572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.