These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36827725)

  • 1. Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity.
    Yu J; Zhu H; Wang H; Shutes B; Niu T
    J Hazard Mater; 2023 May; 449():131042. PubMed ID: 36827725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzalkonium chlorides (C12) inhibits growth but motivates microcystins release of Microcystis aeruginosa revealed by morphological, physiological, and iTRAQ investigation.
    Qian Y; He Y; Li H; Yi M; Zhang L; Zhang L; Liu L; Lu Z
    Environ Pollut; 2022 Jan; 292(Pt A):118305. PubMed ID: 34626715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR.
    Yu J; Zhu H; Shutes B; Wang X
    Environ Pollut; 2022 May; 301():118971. PubMed ID: 35167928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and transcriptome level responses of Microcystis aeruginosa and M. viridis to environmental concentrations of triclosan.
    Li B; Zhang C; Ma Y; Zhou Y; Gao L; He D; Li M
    Chemosphere; 2024 Sep; 363():142822. PubMed ID: 38986778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa.
    Yang M; Fan Z; Xie Y; Fang L; Wang X; Yuan Y; Li R
    J Hazard Mater; 2020 Oct; 397():122746. PubMed ID: 32473499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcystin-LR (MC-LR) inhibits green algae growth by regulating antioxidant and photosynthetic systems.
    Li Z; Zheng Y; Ma H; Cui F
    Harmful Algae; 2024 Apr; 134():102623. PubMed ID: 38705613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective effects of chiral fragrance carvone (L- and D-carvone) on the physiology, oxidative damage, synthesis, and release of microcystin-LR in Microcystis aeruginosa.
    Ye J; Hua S; Liu S; Tian F; Ji X; Li Y; Hou M; Xu W; Meng L; Sun L
    Sci Total Environ; 2022 Dec; 853():158631. PubMed ID: 36084777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplastics Promote Microcystin Synthesis and Release from Cyanobacterial
    Feng LJ; Sun XD; Zhu FP; Feng Y; Duan JL; Xiao F; Li XY; Shi Y; Wang Q; Sun JW; Liu XY; Liu JQ; Zhou LL; Wang SG; Ding Z; Tian H; Galloway TS; Yuan XZ
    Environ Sci Technol; 2020 Mar; 54(6):3386-3394. PubMed ID: 31961660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels.
    Yang M; Du D; Zhu F; Wang X
    Environ Pollut; 2024 Feb; 342():123022. PubMed ID: 38008252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in the cyanobacterium Microcystis aeruginosa PCC 7813: Comparison of different analytical cell stress detection assays.
    Menezes I; Maxwell-McQueeney D; Capelo-Neto J; Pestana CJ; Edwards C; Lawton LA
    Chemosphere; 2021 Apr; 269():128766. PubMed ID: 33143884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms.
    Yang X; Bi Y; Ma X; Dong W; Wang X; Wang S
    J Hazard Mater; 2022 Apr; 428():128276. PubMed ID: 35051775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of butylparaben on growth dynamics and microcystin-LR production in Microcystis aeruginosa.
    Zhang ZH; Zheng JW; Liu SF; Hao TB; Yang WD; Li HY; Wang X
    Environ Res; 2024 Sep; 257():119291. PubMed ID: 38823607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects.
    Le VV; Ko SR; Kang M; Lee SA; Oh HM; Ahn CY
    Environ Pollut; 2022 Jun; 302():119079. PubMed ID: 35245623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic
    Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of glyphosate on microcystin-LR production and release from Microcystis aeruginosa at different temperatures.
    Ye J; Guan Y; Wu L; Wang C; Chen J; Zhou S; Xu C
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41961-41969. PubMed ID: 32700278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology, microcystin production, and transcriptomic responses of Microcystis aeruginosa exposed to calcium and magnesium.
    Yin L; Xu L; Shi K; Chen W; Zhang Y; Wang J; An J; He H; Yang S; Ni L; Li S
    Sci Total Environ; 2024 Feb; 913():169786. PubMed ID: 38181954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma.
    Wang J; Zhang J; Cheng G; Shangguan Y; Yang G; Liu X
    Chemosphere; 2024 Mar; 352():141436. PubMed ID: 38360412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa.
    Lyu K; Meng Q; Zhu X; Dai D; Zhang L; Huang Y; Yang Z
    Environ Sci Technol; 2016 May; 50(9):4798-807. PubMed ID: 27057760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.