These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36828374)
1. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Rhee JY; Ghannam JY; Choi BD; Gerstner ER Tomography; 2023 Jan; 9(1):274-284. PubMed ID: 36828374 [TBL] [Abstract][Full Text] [Related]
2. Extrinsic factors associated with the response to immunotherapy in glioblastoma. Bi H; Zhang C Cancer Lett; 2021 Jul; 511():47-55. PubMed ID: 33933551 [TBL] [Abstract][Full Text] [Related]
3. Let the Guard Down: cAMP Activators Can Improve Immunotherapy in GBM. Lee J; Kay KE; Vogelbaum MA; Lathia JD Cancer Immunol Res; 2023 Oct; 11(10):1300-1301. PubMed ID: 37702792 [TBL] [Abstract][Full Text] [Related]
4. Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors. Medikonda R; Pant A; Lim M Adv Exp Med Biol; 2023; 1394():73-84. PubMed ID: 36587382 [TBL] [Abstract][Full Text] [Related]
5. The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy. Desland FA; Hormigo A Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027976 [TBL] [Abstract][Full Text] [Related]
6. Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models. Koch MS; Zdioruk M; Nowicki MO; Griffith AM; Aguilar E; Aguilar LK; Guzik BW; Barone F; Tak PP; Tabatabai G; Lederer JA; Chiocca EA; Lawler S J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35017150 [TBL] [Abstract][Full Text] [Related]
8. γδ T cells as a potential therapeutic agent for glioblastoma. Kang I; Kim Y; Lee HK Front Immunol; 2023; 14():1273986. PubMed ID: 37928546 [TBL] [Abstract][Full Text] [Related]
9. Local immunotherapy of glioblastoma: A comprehensive review of the concept. Sabahi M; Salehipour A; Bazl MSY; Rezaei N; Mansouri A; Borghei-Razavi H J Neuroimmunol; 2023 Aug; 381():578146. PubMed ID: 37451079 [TBL] [Abstract][Full Text] [Related]
10. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion. Wang M; Jia J; Cui Y; Peng Y; Jiang Y Cell Death Dis; 2021 Nov; 12(11):1065. PubMed ID: 34753903 [TBL] [Abstract][Full Text] [Related]
11. Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma. Li Y; Ma Y; Wu Z; Xie R; Zeng F; Cai H; Lui S; Song B; Chen L; Wu M Front Immunol; 2021; 12():790674. PubMed ID: 34899760 [TBL] [Abstract][Full Text] [Related]
12. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Choi BD; Maus MV; June CH; Sampson JH Clin Cancer Res; 2019 Apr; 25(7):2042-2048. PubMed ID: 30446589 [TBL] [Abstract][Full Text] [Related]
13. Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Karachi A; Yang C; Dastmalchi F; Sayour EJ; Huang J; Azari H; Long Y; Flores C; Mitchell DA; Rahman M Neuro Oncol; 2019 Jun; 21(6):730-741. PubMed ID: 30668768 [TBL] [Abstract][Full Text] [Related]
14. Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. Kreatsoulas D; Bolyard C; Wu BX; Cam H; Giglio P; Li Z J Hematol Oncol; 2022 Jun; 15(1):80. PubMed ID: 35690784 [TBL] [Abstract][Full Text] [Related]
15. Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma. Majd N; de Groot J Expert Opin Pharmacother; 2019 Sep; 20(13):1609-1624. PubMed ID: 31264484 [No Abstract] [Full Text] [Related]
16. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial. Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434 [TBL] [Abstract][Full Text] [Related]
17. Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. Curtin JF; Candolfi M; Fakhouri TM; Liu C; Alden A; Edwards M; Lowenstein PR; Castro MG PLoS One; 2008 Apr; 3(4):e1983. PubMed ID: 18431473 [TBL] [Abstract][Full Text] [Related]
18. Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. Gardell JL; Matsumoto LR; Chinn H; DeGolier KR; Kreuser SA; Prieskorn B; Balcaitis S; Davis A; Ellenbogen RG; Crane CA J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33122397 [TBL] [Abstract][Full Text] [Related]
19. Preclinical Assessment of AMG 596, a Bispecific T-cell Engager (BiTE) Immunotherapy Targeting the Tumor-specific Antigen EGFRvIII. Sternjak A; Lee F; Thomas O; Balazs M; Wahl J; Lorenczewski G; Ullrich I; Muenz M; Rattel B; Bailis JM; Friedrich M Mol Cancer Ther; 2021 May; 20(5):925-933. PubMed ID: 33632870 [TBL] [Abstract][Full Text] [Related]
20. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Wang Z; Wang Y; Yang T; Xing H; Wang Y; Gao L; Guo X; Xing B; Wang Y; Ma W Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]