These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 36828424)
1. Adsorption- and Displacement-Based Approaches for the Removal of Protein-Bound Uremic Toxins. Rodrigues FSC; Faria M Toxins (Basel); 2023 Jan; 15(2):. PubMed ID: 36828424 [TBL] [Abstract][Full Text] [Related]
2. Ibuprofen-Immobilized Thin Films: A Novel Approach to Improve the Clearance of Protein-Bound Uremic Toxins. Rodrigues FSC; Brilhante D; Macêdo A; Pires RF; Faria M ACS Appl Mater Interfaces; 2024 Feb; 16(5):6589-6604. PubMed ID: 38282580 [TBL] [Abstract][Full Text] [Related]
3. Protein-bound uremic toxins (PBUTs) in chronic kidney disease (CKD) patients: Production pathway, challenges and recent advances in renal PBUTs clearance. Daneshamouz S; Eduok U; Abdelrasoul A; Shoker A NanoImpact; 2021 Jan; 21():100299. PubMed ID: 35559786 [TBL] [Abstract][Full Text] [Related]
4. Improved Dialysis Removal of Protein-Bound Uraemic Toxins with a Combined Displacement and Adsorption Technique. Shi Y; Tian H; Wang Y; Shen Y; Zhu Q; Ding F Blood Purif; 2022; 51(6):548-558. PubMed ID: 34515053 [TBL] [Abstract][Full Text] [Related]
5. Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats. Shi Y; Zhang Y; Tian H; Wang Y; Shen Y; Zhu Q; Ding F Nephrol Dial Transplant; 2019 Nov; 34(11):1842-1852. PubMed ID: 31071223 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of Protein-Bound Uremic Toxins Through Direct Hemoperfusion With Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis. Yamamoto S; Sato M; Sato Y; Wakamatsu T; Takahashi Y; Iguchi A; Omori K; Suzuki Y; Ei I; Kaneko Y; Goto S; Kazama JJ; Gejyo F; Narita I Artif Organs; 2018 Jan; 42(1):88-93. PubMed ID: 28703401 [TBL] [Abstract][Full Text] [Related]
7. Protein-Bound Uremic Toxins in Hemodialysis Patients Relate to Residual Kidney Function, Are Not Influenced by Convective Transport, and Do Not Relate to Outcome. van Gelder MK; Middel IR; Vernooij RWM; Bots ML; Verhaar MC; Masereeuw R; Grooteman MP; Nubé MJ; van den Dorpel MA; Blankestijn PJ; Rookmaaker MB; Gerritsen KGF Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32272776 [TBL] [Abstract][Full Text] [Related]
8. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Faria M; de Pinho MN Transl Res; 2021 Mar; 229():115-134. PubMed ID: 32891787 [TBL] [Abstract][Full Text] [Related]
9. Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271 [TBL] [Abstract][Full Text] [Related]
10. Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders. Dehghan Niestanak V; Unsworth LD Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108613 [TBL] [Abstract][Full Text] [Related]
11. Removal of protein-bound, hydrophobic uremic toxins by a combined fractionated plasma separation and adsorption technique. Brettschneider F; Tölle M; von der Giet M; Passlick-Deetjen J; Steppan S; Peter M; Jankowski V; Krause A; Kühne S; Zidek W; Jankowski J Artif Organs; 2013 Apr; 37(4):409-16. PubMed ID: 23330821 [TBL] [Abstract][Full Text] [Related]
12. In silico comparison of protein-bound uremic toxin removal by hemodialysis, hemodiafiltration, membrane adsorption, and binding competition. Maheshwari V; Thijssen S; Tao X; Fuertinger DH; Kappel F; Kotanko P Sci Rep; 2019 Jan; 9(1):909. PubMed ID: 30696874 [TBL] [Abstract][Full Text] [Related]
13. Using binding competitors of albumin to promote the removal of protein-bound uremic toxins in hemodialysis: Hope or pipe dream? Florens N; Yi D; Juillard L; Soulage CO Biochimie; 2018 Jan; 144():1-8. PubMed ID: 28987629 [TBL] [Abstract][Full Text] [Related]
14. Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis. Li J; Han L; Xie J; Liu S; Jia L Carbohydr Polym; 2020 Nov; 247():116665. PubMed ID: 32829793 [TBL] [Abstract][Full Text] [Related]
15. Improved dialysis removal of protein-bound uremic toxins by salvianolic acids. Li J; Wang Y; Xu X; Cao W; Shen Z; Wang N; Leng J; Zou N; Shang E; Zhu Z; Guo J; Duan J Phytomedicine; 2019 Apr; 57():166-173. PubMed ID: 30772752 [TBL] [Abstract][Full Text] [Related]
16. Uremic toxins: a new focus on an old subject. Yavuz A; Tetta C; Ersoy FF; D'intini V; Ratanarat R; De Cal M; Bonello M; Bordoni V; Salvatori G; Andrikos E; Yakupoglu G; Levin NW; Ronco C Semin Dial; 2005; 18(3):203-11. PubMed ID: 15934967 [TBL] [Abstract][Full Text] [Related]
17. Effect of Membrane Permeance and System Parameters on the Removal of Protein-Bound Uremic Toxins in Hemodialysis. Chow CM; Persad AH; Karnik R Ann Biomed Eng; 2024 Mar; 52(3):526-541. PubMed ID: 37993752 [TBL] [Abstract][Full Text] [Related]
18. [Uremic Toxins: how can we improve the removal today?]. Teatini U; Romei Longhena G G Ital Nefrol; 2017 Sep; 34(5):89-101. PubMed ID: 28963830 [TBL] [Abstract][Full Text] [Related]
19. Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. Yen SC; Liu ZW; Juang RS; Sahoo S; Huang CH; Chen P; Hsiao YS; Fang JT ACS Appl Mater Interfaces; 2019 Nov; 11(47):43843-43856. PubMed ID: 31663727 [TBL] [Abstract][Full Text] [Related]
20. Update of uremic toxin research by mass spectrometry. Niwa T Mass Spectrom Rev; 2011; 30(3):510-21. PubMed ID: 21328600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]