These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 36828475)
1. Metabolome-Based Classification of Snake Venoms by Bioinformatic Tools. Alonso LL; Slagboom J; Casewell NR; Samanipour S; Kool J Toxins (Basel); 2023 Feb; 15(2):. PubMed ID: 36828475 [TBL] [Abstract][Full Text] [Related]
2. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Offor BC; Muller B; Piater LA Toxins (Basel); 2022 Oct; 14(11):. PubMed ID: 36355973 [TBL] [Abstract][Full Text] [Related]
3. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. Lomonte B; Fernández J; Sanz L; Angulo Y; Sasa M; Gutiérrez JM; Calvete JJ J Proteomics; 2014 Jun; 105():323-39. PubMed ID: 24576642 [TBL] [Abstract][Full Text] [Related]
4. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Liu CC; Lin CC; Hsiao YC; Wang PJ; Yu JS J Proteomics; 2018 Sep; 187():59-68. PubMed ID: 29929037 [TBL] [Abstract][Full Text] [Related]
5. Proteomic characteristics of six snake venoms from the Viperidae and Elapidae families in China and their relation to local tissue necrosis. Qin WG; Zhuo ZP; Hu H; Lay M; Li QQ; Huang JT; Zeng LB; Liang ZJ; Long F; Liang Q Toxicon; 2023 Nov; 235():107317. PubMed ID: 37839739 [TBL] [Abstract][Full Text] [Related]
6. First Insights into the Venom Composition of Two Ecuadorian Coral Snakes. Hernández-Altamirano JA; Salazar-Valenzuela D; Medina-Villamizar EJ; Quirola DR; Patel K; Vaiyapuri S; Lomonte B; Almeida JR Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499012 [No Abstract] [Full Text] [Related]
7. Clinical implications of convergent procoagulant toxicity and differential antivenom efficacy in Australian elapid snake venoms. Zdenek CN; den Brouw BO; Dashevsky D; Gloria A; Youngman NJ; Watson E; Green P; Hay C; Dunstan N; Allen L; Fry BG Toxicol Lett; 2019 Nov; 316():171-182. PubMed ID: 31442586 [TBL] [Abstract][Full Text] [Related]
8. Compendium of medically important snakes, venom activity and clinical presentations in Ghana. Deikumah JP; Biney RP; Awoonor-Williams JK; Gyakobo MK PLoS Negl Trop Dis; 2023 Jul; 17(7):e0011050. PubMed ID: 37506181 [TBL] [Abstract][Full Text] [Related]
9. Distinct regulatory networks control toxin gene expression in elapid and viperid snakes. Modahl CM; Han SX; van Thiel J; Vaz C; Dunstan NL; Frietze S; Jackson TNW; Mackessy SP; Kini RM BMC Genomics; 2024 Feb; 25(1):186. PubMed ID: 38365592 [TBL] [Abstract][Full Text] [Related]
10. Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii (Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models. Calvete JJ; Bonilla F; Granados-Martínez S; Sanz L; Lomonte B; Sasa M J Proteomics; 2020 Aug; 225():103882. PubMed ID: 32598980 [TBL] [Abstract][Full Text] [Related]
11. Snakes and snakebite in Central America. Russell FE; Walter FG; Bey TA; Fernandez MC Toxicon; 1997 Oct; 35(10):1469-522. PubMed ID: 9428098 [TBL] [Abstract][Full Text] [Related]
12. Knowledge about Snake Venoms and Toxins from Colombia: A Systematic Review. Pereañez JA; Preciado LM; Rey-Suárez P Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999521 [TBL] [Abstract][Full Text] [Related]
13. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Palermo G; Schouten WM; Alonso LL; Ulens C; Kool J; Slagboom J Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069093 [TBL] [Abstract][Full Text] [Related]
14. Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy. Youngman NJ; Zdenek CN; Dobson JS; Bittenbinder MA; Gillett A; Hamilton B; Dunstan N; Allen L; Veary A; Veary E; Fry BG Toxicol Lett; 2019 Mar; 302():1-6. PubMed ID: 30502385 [TBL] [Abstract][Full Text] [Related]
15. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. Rey-Suárez P; Núñez V; Fernández J; Lomonte B J Proteomics; 2016 Mar; 136():262-73. PubMed ID: 26883873 [TBL] [Abstract][Full Text] [Related]
16. Contextual Constraints: Dynamic Evolution of Snake Venom Phospholipase A Suranse V; Jackson TNW; Sunagar K Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737081 [TBL] [Abstract][Full Text] [Related]
17. Highly Evolvable: Investigating Interspecific and Intraspecific Venom Variation in Taipans ( van Thiel J; Alonso LL; Slagboom J; Dunstan N; Wouters RM; Modahl CM; Vonk FJ; Jackson TNW; Kool J Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668892 [TBL] [Abstract][Full Text] [Related]
18. Profiling the Murine Acute Phase and Inflammatory Responses to African Snake Venom: An Approach to Inform Acute Snakebite Pathology. Alsolaiss J; Evans CA; Oluoch GO; Casewell NR; Harrison RA Toxins (Basel); 2022 Mar; 14(4):. PubMed ID: 35448838 [TBL] [Abstract][Full Text] [Related]
19. Remarkable intrapopulation venom variability in the monocellate cobra (Naja kaouthia) unveils neglected aspects of India's snakebite problem. Rashmi U; Khochare S; Attarde S; Laxme RRS; Suranse V; Martin G; Sunagar K J Proteomics; 2021 Jun; 242():104256. PubMed ID: 33957314 [TBL] [Abstract][Full Text] [Related]
20. Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: opening new avenues in clinical research. Chanda A; Mukherjee AK Expert Rev Proteomics; 2020 May; 17(5):411-423. PubMed ID: 32579411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]