BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36828821)

  • 1. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases.
    Kommedal EG; Angeltveit CF; Klau LJ; Ayuso-Fernández I; Arstad B; Antonsen SG; Stenstrøm Y; Ekeberg D; Gírio F; Carvalheiro F; Horn SJ; Aachmann FL; Eijsink VGH
    Nat Commun; 2023 Feb; 14(1):1063. PubMed ID: 36828821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass.
    Kommedal EG; Sæther F; Hahn T; Eijsink VGH
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2204510119. PubMed ID: 35969781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story?
    Manavalan T; Stepnov AA; Hegnar OA; Eijsink VGH
    Carbohydr Res; 2021 Jul; 505():108350. PubMed ID: 34049079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation.
    Johansen KS
    Trends Plant Sci; 2016 Nov; 21(11):926-936. PubMed ID: 27527668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.
    Chabbert B; Habrant A; Herbaut M; Foulon L; Aguié-Béghin V; Garajova S; Grisel S; Bennati-Granier C; Gimbert-Herpoël I; Jamme F; Réfrégiers M; Sandt C; Berrin JG; Paës G
    Sci Rep; 2017 Dec; 7(1):17792. PubMed ID: 29259205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass.
    Bissaro B; Várnai A; Røhr ÅK; Eijsink VGH
    Microbiol Mol Biol Rev; 2018 Dec; 82(4):. PubMed ID: 30257993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery.
    Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H
    Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs).
    Kont R; Bissaro B; Eijsink VGH; Väljamäe P
    Nat Commun; 2020 Nov; 11(1):5786. PubMed ID: 33188177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases.
    Berrin JG; Rosso MN; Abou Hachem M
    Carbohydr Res; 2017 Aug; 448():155-160. PubMed ID: 28535872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase.
    Kracher D; Forsberg Z; Bissaro B; Gangl S; Preims M; Sygmund C; Eijsink VGH; Ludwig R
    FEBS J; 2020 Mar; 287(5):897-908. PubMed ID: 31532909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H
    Bissaro B; Røhr ÅK; Müller G; Chylenski P; Skaugen M; Forsberg Z; Horn SJ; Vaaje-Kolstad G; Eijsink VGH
    Nat Chem Biol; 2017 Oct; 13(10):1123-1128. PubMed ID: 28846668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases.
    Frommhagen M; Westphal AH; Hilgers R; Koetsier MJ; Hinz SWA; Visser J; Gruppen H; van Berkel WJH; Kabel MA
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1281-1295. PubMed ID: 29196788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.