BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36828821)

  • 21. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
    Branch J; Rajagopal BS; Paradisi A; Yates N; Lindley PJ; Smith J; Hollingsworth K; Turnbull WB; Henrissat B; Parkin A; Berry A; Hemsworth GR
    Biochem J; 2021 Jul; 478(14):2927-2944. PubMed ID: 34240737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule study of oxidative enzymatic deconstruction of cellulose.
    Eibinger M; Sattelkow J; Ganner T; Plank H; Nidetzky B
    Nat Commun; 2017 Oct; 8(1):894. PubMed ID: 29026070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose.
    Li F; Zhang J; Ma F; Chen Q; Xiao Q; Zhang X; Xie S; Yu H
    Environ Microbiol; 2021 Aug; 23(8):4547-4560. PubMed ID: 34169632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry.
    Bissaro B; Eijsink VGH
    Essays Biochem; 2023 Mar; 67(3):575-584. PubMed ID: 36734231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-Induced Electron Transfer Protocol for Enzymatic Oxidation of Polysaccharides.
    Cannella D
    Methods Mol Biol; 2018; 1796():247-253. PubMed ID: 29856058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown.
    Monclaro AV; Filho EXF
    Int J Biol Macromol; 2017 Sep; 102():771-778. PubMed ID: 28450248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
    Zhang R; Liu Y; Zhang Y; Feng D; Hou S; Guo W; Niu K; Jiang Y; Han L; Sindhu L; Fang X
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5739-5750. PubMed ID: 31152202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure.
    Villares A; Moreau C; Bennati-Granier C; Garajova S; Foucat L; Falourd X; Saake B; Berrin JG; Cathala B
    Sci Rep; 2017 Jan; 7():40262. PubMed ID: 28071716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of H
    Kuusk S; Bissaro B; Kuusk P; Forsberg Z; Eijsink VGH; Sørlie M; Väljamäe P
    J Biol Chem; 2018 Jan; 293(2):523-531. PubMed ID: 29138240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases.
    Muraleedharan MN; Zouraris D; Karantonis A; Topakas E; Sandgren M; Rova U; Christakopoulos P; Karnaouri A
    Biotechnol Biofuels; 2018; 11():296. PubMed ID: 30386433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose.
    Möllers KB; Mikkelsen H; Simonsen TI; Cannella D; Johansen KS; Bjerrum MJ; Felby C
    Carbohydr Res; 2017 Aug; 448():182-186. PubMed ID: 28335986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of the chitinolytic peroxygenase reaction.
    Bissaro B; Streit B; Isaksen I; Eijsink VGH; Beckham GT; DuBois JL; Røhr ÅK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1504-1513. PubMed ID: 31907317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation.
    Liu B; Olson Å; Wu M; Broberg A; Sandgren M
    PLoS One; 2017; 12(12):e0189479. PubMed ID: 29228039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.