These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36828856)

  • 1. Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing.
    Wang D; Tang R; Lin H; Liu L; Xu N; Sun Y; Zhao X; Wang Z; Wang D; Mai Z; Zhou Y; Gao N; Song C; Zhu L; Wu T; Liu M; Xing G
    Nat Commun; 2023 Feb; 14(1):1068. PubMed ID: 36828856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spintronic Integrate-Fire-Reset Neuron with Stochasticity for Neuromorphic Computing.
    Yang Q; Mishra R; Cen Y; Shi G; Sharma R; Fong X; Yang H
    Nano Lett; 2022 Nov; 22(21):8437-8444. PubMed ID: 36260522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy of Spin-Orbit Torque and Built-In Field in Magnetic Tunnel Junctions with Tilted Magnetic Anisotropy: Toward Tunable and Reliable Spintronic Neurons.
    Wang D; Wang Z; Xu N; Liu L; Lin H; Zhao X; Jiang S; Lin W; Gao N; Liu M; Xing G
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203006. PubMed ID: 35927016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposal for leaky integrate-and-fire neurons by domain walls in antiferromagnetic insulators.
    Brehm V; Austefjord JW; Lepadatu S; Qaiumzadeh A
    Sci Rep; 2023 Aug; 13(1):13404. PubMed ID: 37591925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices.
    Wang C; Lee C; Roy K
    Sci Rep; 2022 May; 12(1):8361. PubMed ID: 35589802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic skyrmion-based artificial neuron device.
    Li S; Kang W; Huang Y; Zhang X; Zhou Y; Zhao W
    Nanotechnology; 2017 Aug; 28(31):31LT01. PubMed ID: 28639562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    PatiƱo-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing.
    Park SO; Jeong H; Park J; Bae J; Choi S
    Nat Commun; 2022 Jun; 13(1):2888. PubMed ID: 35660724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Leaky Integrate-and-Fire Sensory Neuron for In-Sensor Computing Neuromorphic Perception at the Edge.
    Yuan Y; Gao R; Wu Q; Fang S; Bu X; Cui Y; Han C; Hu L; Li X; Wang X; Geng L; Liu W
    ACS Sens; 2023 Jul; 8(7):2646-2655. PubMed ID: 37232162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.
    Zhang D; Zeng L; Cao K; Wang M; Peng S; Zhang Y; Zhang Y; Klein JO; Wang Y; Zhao W
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):828-36. PubMed ID: 27214913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Spiking Neurons Using Threshold Switching Devices for High-Efficient Neuromorphic Computing.
    Ding Y; Zhang Y; Zhang X; Chen P; Zhang Z; Yang Y; Cheng L; Mu C; Wang M; Xiang D; Wu G; Zhou K; Yuan Z; Liu Q
    Front Neurosci; 2021; 15():786694. PubMed ID: 35069102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems.
    Hua Q; Wu H; Gao B; Zhang Q; Wu W; Li Y; Wang X; Hu W; Qian H
    Glob Chall; 2019 Nov; 3(11):1900015. PubMed ID: 31692992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model.
    Lee YJ; On MB; Xiao X; Proietti R; Yoo SJB
    Opt Express; 2022 May; 30(11):19360-19389. PubMed ID: 36221716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact artificial neuron based on anti-ferroelectric transistor.
    Cao R; Zhang X; Liu S; Lu J; Wang Y; Jiang H; Yang Y; Sun Y; Wei W; Wang J; Xu H; Li Q; Liu Q
    Nat Commun; 2022 Nov; 13(1):7018. PubMed ID: 36384960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-mediated multistate skyrmion for neuron devices.
    Shi S; Zhao Y; Sun J; Yu G; Zhou H; Wang J
    Nanoscale; 2024 Jun; 16(25):12013-12020. PubMed ID: 38805240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Volatile MoS
    Huo J; Yin H; Zhang Y; Tan X; Mao Y; Zhang C; Zhang F; Zhan G; Zhang Z; Zhang Q; Xu G; Wu Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57440-57448. PubMed ID: 36512440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Elements for Neuromorphic Computing.
    Blachowicz T; Ehrmann A
    Molecules; 2020 May; 25(11):. PubMed ID: 32486173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.