These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 36828883)
1. Biogenic copper oxide nanoparticles from Bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells. Dolati M; Tafvizi F; Salehipour M; Komeili Movahed T; Jafari P Sci Rep; 2023 Feb; 13(1):3256. PubMed ID: 36828883 [TBL] [Abstract][Full Text] [Related]
2. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. Khaledizade E; Tafvizi F; Jafari P J Trace Elem Med Biol; 2024 Mar; 82():127357. PubMed ID: 38103517 [TBL] [Abstract][Full Text] [Related]
3. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Talebian S; Shahnavaz B; Nejabat M; Abolhassani Y; Rassouli FB Front Bioeng Biotechnol; 2023; 11():1140010. PubMed ID: 36949885 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. Haider HI; Zafar I; Ain QU; Noreen A; Nazir A; Javed R; Sehgal SA; Khan AA; Rahman MM; Rashid S; Garai S; Sharma R Environ Sci Pollut Res Int; 2023 Mar; 30(13):37370-37385. PubMed ID: 36571685 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities. Vinothkanna A; Mathivanan K; Ananth S; Ma Y; Sekar S Environ Sci Pollut Res Int; 2023 Mar; 30(15):42563-42574. PubMed ID: 35175521 [TBL] [Abstract][Full Text] [Related]
6. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Shehabeldine AM; Amin BH; Hagras FA; Ramadan AA; Kamel MR; Ahmed MA; Atia KH; Salem SS Appl Biochem Biotechnol; 2023 Jan; 195(1):467-485. PubMed ID: 36087233 [TBL] [Abstract][Full Text] [Related]
7. Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Chen H; Feng X; Gao L; Mickymaray S; Paramasivam A; Abdulaziz Alfaiz F; Almasmoum HA; Ghaith MM; Almaimani RA; Aziz Ibrahim IA Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):240-249. PubMed ID: 33719804 [TBL] [Abstract][Full Text] [Related]
8. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. Manikandan DB; Arumugam M; Veeran S; Sridhar A; Krishnasamy Sekar R; Perumalsamy B; Ramasamy T Environ Sci Pollut Res Int; 2021 Jul; 28(26):33927-33941. PubMed ID: 33410001 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Mahmood RI; Kadhim AA; Ibraheem S; Albukhaty S; Mohammed-Salih HS; Abbas RH; Jabir MS; Mohammed MKA; Nayef UM; AlMalki FA; Sulaiman GM; Al-Karagoly H Sci Rep; 2022 Sep; 12(1):16165. PubMed ID: 36171339 [TBL] [Abstract][Full Text] [Related]
10. Characterization and Anticancer Activities of Green Synthesized CuO Nanoparticles, A Review. Alizadeh SR; Ebrahimzadeh MA Anticancer Agents Med Chem; 2021; 21(12):1529-1543. PubMed ID: 33121417 [TBL] [Abstract][Full Text] [Related]
12. Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. Manzoor MA; Shah IH; Ali Sabir I; Ahmad A; Albasher G; Dar AA; Altaf MA; Shakoor A Environ Res; 2023 Aug; 231(Pt 1):115941. PubMed ID: 37100366 [TBL] [Abstract][Full Text] [Related]
13. Comparing the toxicity effects of copper oxide nanoparticles conjugated with Lapatinib on breast (MDA-MB-231) and lung (A549) cancer cell lines. Talarposhti MV; Salehzadeh A; Jalali A Naunyn Schmiedebergs Arch Pharmacol; 2024 Sep; 397(9):6855-6866. PubMed ID: 38563880 [TBL] [Abstract][Full Text] [Related]
14. Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Farshori NN; Siddiqui MA; Al-Oqail MM; Al-Sheddi ES; Al-Massarani SM; Ahamed M; Ahmad J; Al-Khedhairy AA Biol Trace Elem Res; 2022 Dec; 200(12):5042-5051. PubMed ID: 35000107 [TBL] [Abstract][Full Text] [Related]
15. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells. Afzali M; Sadat Shandiz SA; Keshtmand Z Mol Biol Rep; 2024 Jan; 51(1):62. PubMed ID: 38170277 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic and Antibacterial Properties of CuONPs from Orange, Lemon and Tangerine Peel Extracts: Potential for Combating Bacterial Resistance. Tshireletso P; Ateba CN; Fayemi OE Molecules; 2021 Jan; 26(3):. PubMed ID: 33499352 [TBL] [Abstract][Full Text] [Related]
17. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations. Mani VM; Kalaivani S; Sabarathinam S; Vasuki M; Soundari AJPG; Ayyappa Das MP; Elfasakhany A; Pugazhendhi A Environ Res; 2021 Oct; 201():111502. PubMed ID: 34214561 [TBL] [Abstract][Full Text] [Related]
18. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Ali K; Ahmed B; Ansari SM; Saquib Q; Al-Khedhairy AA; Dwivedi S; Alshaeri M; Khan MS; Musarrat J Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():747-758. PubMed ID: 30948112 [TBL] [Abstract][Full Text] [Related]
19. Biosynthesis of copper oxide nanoparticles using Caesalpinia sappan extract: In vitro evaluation of antifungal and antibiofilm activities against Candida albicans. Sasarom M; Wanachantararak P; Chaijareenont P; Okonogi S Drug Discov Ther; 2023 Sep; 17(4):238-247. PubMed ID: 37612046 [TBL] [Abstract][Full Text] [Related]
20. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Gurunathan S; Park JH; Han JW; Kim JH Int J Nanomedicine; 2015; 10():4203-22. PubMed ID: 26170659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]