BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 36828988)

  • 1. Critical tests of fuzzy trace theory in brain and behavior: uncertainty across time, probability, and development.
    Reyna VF; Müller SM; Edelson SM
    Cogn Affect Behav Neurosci; 2023 Jun; 23(3):746-772. PubMed ID: 36828988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain activation covaries with reported criminal behaviors when making risky choices: A fuzzy-trace theory approach.
    Reyna VF; Helm RK; Weldon RB; Shah PD; Turpin AG; Govindgari S
    J Exp Psychol Gen; 2018 Jul; 147(7):1094-1109. PubMed ID: 29975093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural substrates of probabilistic and intertemporal decision making.
    Weber BJ; Huettel SA
    Brain Res; 2008 Oct; 1234():104-15. PubMed ID: 18710652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurobiological and memory models of risky decision making in adolescents versus young adults.
    Reyna VF; Estrada SM; DeMarinis JA; Myers RM; Stanisz JM; Mills BA
    J Exp Psychol Learn Mem Cogn; 2011 Sep; 37(5):1125-42. PubMed ID: 21707215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Risk-taking in adolescence: A neuroeconomics approach].
    Barbalat G; Domenech P; Vernet M; Fourneret P
    Encephale; 2010 Apr; 36(2):147-54. PubMed ID: 20434632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal Dynamics Underlying Prelimbic Prefrontal Cortical Regulation of Action Selection and Outcome Evaluation during Risk/Reward Decision-Making.
    Bercovici DA; Princz-Lebel O; Schumacher JD; Lo VM; Floresco SB
    J Neurosci; 2023 Feb; 43(7):1238-1255. PubMed ID: 36609453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.
    Brainerd CJ; Reyna VF
    Adv Child Dev Behav; 2001; 28():41-100. PubMed ID: 11605365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adolescent risky decision-making: neurocognitive development of reward and control regions.
    Van Leijenhorst L; Gunther Moor B; Op de Macks ZA; Rombouts SA; Westenberg PM; Crone EA
    Neuroimage; 2010 May; 51(1):345-55. PubMed ID: 20188198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural tracking of subjective value under riskand ambiguity in adolescence.
    Blankenstein NE; van Duijvenvoorde ACK
    Cogn Affect Behav Neurosci; 2019 Dec; 19(6):1364-1378. PubMed ID: 31654233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential neurobiological effects of expert advice on risky choice in adolescents and adults.
    Engelmann JB; Moore S; Monica Capra C; Berns GS
    Soc Cogn Affect Neurosci; 2012 Jun; 7(5):557-67. PubMed ID: 22563008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition.
    Rogers RD; Ramnani N; Mackay C; Wilson JL; Jezzard P; Carter CS; Smith SM
    Biol Psychiatry; 2004 Mar; 55(6):594-602. PubMed ID: 15013828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.
    Blankenstein NE; Peper JS; Crone EA; van Duijvenvoorde ACK
    J Cogn Neurosci; 2017 Nov; 29(11):1845-1859. PubMed ID: 28686139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.
    Gluth S; Hotaling JM; Rieskamp J
    J Neurosci; 2017 Jan; 37(2):371-382. PubMed ID: 28077716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk and Rationality in Adolescent Decision Making: Implications for Theory, Practice, and Public Policy.
    Reyna VF; Farley F
    Psychol Sci Public Interest; 2006 Sep; 7(1):1-44. PubMed ID: 26158695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation.
    Mason L; O'Sullivan N; Montaldi D; Bentall RP; El-Deredy W
    Brain; 2014 Aug; 137(Pt 8):2346-55. PubMed ID: 25009169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preference for future outcomes correlates with the temporal variability of functional connectivity among brain regions.
    Xu T; Chen Z; Feng T
    Behav Brain Res; 2019 Dec; 375():112111. PubMed ID: 31404558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Fuzzy-trace Theory Predicts Development of Risky Decision Making, with Novel Extensions to Culture and Reward Sensitivity.
    Edelson S; Reyna V
    Dev Rev; 2021 Dec; 62():. PubMed ID: 34776580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Win-Concurrent Sensory Cues Can Promote Riskier Choice.
    Cherkasova MV; Clark L; Barton JJS; Schulzer M; Shafiee M; Kingstone A; Stoessl AJ; Winstanley CA
    J Neurosci; 2018 Nov; 38(48):10362-10370. PubMed ID: 30373765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salience-Driven Value Construction for Adaptive Choice under Risk.
    Spitmaan M; Chu E; Soltani A
    J Neurosci; 2019 Jun; 39(26):5195-5209. PubMed ID: 31023835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuronal prospect theory model in the brain reward circuitry.
    Imaizumi Y; Tymula A; Tsubo Y; Matsumoto M; Yamada H
    Nat Commun; 2022 Oct; 13(1):5855. PubMed ID: 36195765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.