These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 36829077)
1. Enhanced biomass production and wastewater treatment in attached co-culture of Chlorella pyrenoidosa with nitrogen-fixing bacteria Azotobacter beijerinckii. Dong H; Liu W; Zhang H; Wang Z; Feng F; Zhou L; Duan H; Xu T; Li X; Ma J Bioprocess Biosyst Eng; 2023 May; 46(5):707-716. PubMed ID: 36829077 [TBL] [Abstract][Full Text] [Related]
2. Improvement of phosphate solubilizing bacteria Paenibacillus xylanexedens on the growth of Chlorella pyrenoidosa and wastewater treatment in attached cultivation. Dong H; Liu W; Zhang H; Zheng X; Duan H; Zhou L; Xu T; Ruan R Chemosphere; 2022 Nov; 306():135604. PubMed ID: 35809743 [TBL] [Abstract][Full Text] [Related]
3. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality. Zhou L; Liu W; Duan H; Dong H; Li J; Zhang S; Zhang J; Ding S; Xu T; Guo B Chemosphere; 2023 Feb; 313():137409. PubMed ID: 36457265 [TBL] [Abstract][Full Text] [Related]
4. [Purification Effect of Piggery Wastewater with Wang YZ; Cheng PF; Liu DF; Liu TZ Huan Jing Ke Xue; 2017 Aug; 38(8):3354-3361. PubMed ID: 29964944 [TBL] [Abstract][Full Text] [Related]
5. Evaluating nutrient limitation in co-culture of Chlorella pyrenoidosa and Rhodobacter sphaeroides. Shen XF; Xu YP; Jiang YF; Gao LJ; Tong XQ; Gong J; Yang YF; Zeng RJ Sci Total Environ; 2024 Jan; 906():167706. PubMed ID: 37820812 [TBL] [Abstract][Full Text] [Related]
6. Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Cheng P; Cheng JJ; Cobb K; Zhou C; Zhou N; Addy M; Chen P; Yan X; Ruan R Bioresour Technol; 2020 Feb; 297():122516. PubMed ID: 31830716 [TBL] [Abstract][Full Text] [Related]
7. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production. Wan L; Wu Y; Zhang X; Zhang W Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354 [TBL] [Abstract][Full Text] [Related]
8. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater. Cheng P; Chu R; Zhang X; Song L; Chen D; Zhou C; Yan X; Cheng JJ; Ruan R Bioresour Technol; 2020 Dec; 318():124054. PubMed ID: 32892026 [TBL] [Abstract][Full Text] [Related]
9. Biofilm Attached Cultivation of Cheng P; Wang Y; Liu T; Liu D Front Plant Sci; 2017; 8():1594. PubMed ID: 28983302 [TBL] [Abstract][Full Text] [Related]
10. Treatment of Synthetic Ammonium Sulfate Wastewater by Mixed Culture of Chlorella pyrenoidosa and Enriched Nitrobacteria. Qin L; Feng S; Feng P; Wang Z; Zhu S Curr Microbiol; 2021 Nov; 78(11):3891-3900. PubMed ID: 34510224 [TBL] [Abstract][Full Text] [Related]
11. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. Wang Q; Yu Z; Wei D; Chen W; Xie J Bioresour Technol; 2021 Aug; 333():125151. PubMed ID: 33892430 [TBL] [Abstract][Full Text] [Related]
12. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production. Cheng P; Huang J; Song X; Yao T; Jiang J; Zhou C; Yan X; Ruan R Bioresour Technol; 2022 Apr; 349():126888. PubMed ID: 35202828 [TBL] [Abstract][Full Text] [Related]
13. Effects of three surfactants on co-conversion of endogenous carbon and nitrogen of dairy wastewater in mesophilic hydrolytic acidification coupled microalgae culture system. Wang B; Qin L; Huang D; Chen H; Feng P; Zhu S; Wang Z Environ Sci Pollut Res Int; 2022 May; 29(21):32227-32237. PubMed ID: 35013953 [TBL] [Abstract][Full Text] [Related]
14. Kinetic modeling and experiments on removal of COD/nutrients from dairy effluent using chlorella and co-culture. Roy C; Sen P; Vurimindi H Bioprocess Biosyst Eng; 2023 Aug; 46(8):1099-1110. PubMed ID: 37338582 [TBL] [Abstract][Full Text] [Related]
15. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa. Gan K; Mou X; Xu Y; Wang H Bioresour Technol; 2014 Nov; 171():285-90. PubMed ID: 25212822 [TBL] [Abstract][Full Text] [Related]
16. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. Wang Q; Yu Z; Wei D Bioresour Technol; 2020 Oct; 313():123499. PubMed ID: 32554150 [TBL] [Abstract][Full Text] [Related]
17. Biohydrogen production coupled with wastewater treatment using selected microalgae. Satheesh S; Pugazhendi A; Al-Mur BA; Balasubramani R Chemosphere; 2023 Sep; 334():138932. PubMed ID: 37209846 [TBL] [Abstract][Full Text] [Related]
18. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Yang L; Tan X; Li D; Chu H; Zhou X; Zhang Y; Yu H Bioresour Technol; 2015 Apr; 181():54-61. PubMed ID: 25638404 [TBL] [Abstract][Full Text] [Related]
19. Oilfield-produced water as a medium for the growth of Chlorella pyrenoidosa outdoor in an arid region. Rahmani A; Zerrouki D; Tabchouche A; Djafer L Environ Sci Pollut Res Int; 2022 Dec; 29(58):87509-87518. PubMed ID: 35809171 [TBL] [Abstract][Full Text] [Related]
20. Nutrients recycling and biomass production from Chlorella pyrenoidosa culture using anaerobic food processing wastewater in a pilot-scale tubular photobioreactor. Tan XB; Wan XP; Yang LB; Wang X; Meng J; Jiang MJ; Pi HJ Chemosphere; 2021 May; 270():129459. PubMed ID: 33388504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]