These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 36829460)

  • 1. Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate.
    Shillcock JC; Thomas DB; Ipsen JH; Brown AD
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowding-induced phase separation and gelling by co-condensation of PEG in NPM1-rRNA condensates.
    André AAM; Yewdall NA; Spruijt E
    Biophys J; 2023 Jan; 122(2):397-407. PubMed ID: 36463407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular Simulations on a Bespoke Compute Fabric.
    Shillcock JC; Thomas DB; Beaumont JR; Bragg GM; Vousden ML; Brown AD
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics.
    Vweza AO; Song CG; Chong KT
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and deformation of biomolecular condensates under the action of shear flow.
    Coronas LE; Van T; Iorio A; Lapidus LJ; Feig M; Sterpone F
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
    Abyzov A; Blackledge M; Zweckstetter M
    Chem Rev; 2022 Mar; 122(6):6719-6748. PubMed ID: 35179885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behaviour and structure of a model biomolecular condensate.
    Shillcock JC; Brochut M; Chénais E; Ipsen JH
    Soft Matter; 2020 Jul; 16(27):6413-6423. PubMed ID: 32584357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules.
    Shillcock JC; Lagisquet C; Alexandre J; Vuillon L; Ipsen JH
    Soft Matter; 2022 Sep; 18(35):6674-6693. PubMed ID: 36004748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales.
    Polyansky AA; Gallego LD; Efremov RG; Köhler A; Zagrovic B
    Elife; 2023 Jul; 12():. PubMed ID: 37470705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled and orthogonal partitioning of large particles into biomolecular condensates.
    Kelley FM; Ani A; Pinlac EG; Linders B; Favetta B; Barai M; Ma Y; Singh A; Dignon GL; Gu Y; Schuster BS
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechano-dependent sorbitol accumulation supports biomolecular condensate.
    Torrino S; Oldham WM; Tejedor AR; Burgos IS; Rachedi N; Fraissard K; Chauvet C; Sbai C; O'Hara BP; Abélanet S; Brau F; Clavel S; Collepardo-Guevara R; Espinosa JR; Ben-Sahra I; Bertero T
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Biomolecular Condensate Localization and Protein Phase Separation Predictors.
    Kuechler ER; Huang A; Bui JM; Mayor T; Gsponer J
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme dynamics in a biomolecular condensate.
    Galvanetto N; Ivanović MT; Chowdhury A; Sottini A; Nüesch MF; Nettels D; Best RB; Schuler B
    Nature; 2023 Jul; 619(7971):876-883. PubMed ID: 37468629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.
    Monterroso B; Margolin W; Boersma AJ; Rivas G; Poolman B; Zorrilla S
    Chem Rev; 2024 Feb; 124(4):1899-1949. PubMed ID: 38331392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular Condensates Regulate Enzymatic Activity under a Crowded Milieu: Synchronization of Liquid-Liquid Phase Separation and Enzymatic Transformation.
    Saini B; Mukherjee TK
    J Phys Chem B; 2023 Jan; 127(1):180-193. PubMed ID: 36594499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the Physico-Chemical Composition of Biomolecular Condensates from Spatially-Resolved NMR.
    Pantoja CF; Ibáñez de Opakua A; Cima-Omori MS; Zweckstetter M
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218078. PubMed ID: 36847235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.