BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36829461)

  • 1. How AlphaFold2 Predicts Conditionally Folding Regions Annotated in an Intrinsically Disordered Protein Database, IDEAL.
    Anbo H; Sakuma K; Fukuchi S; Ota M
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2.
    Alderson TR; Pritišanac I; Kolarić Đ; Moses AM; Forman-Kay JD
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2304302120. PubMed ID: 37878721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Origin of Discrepancies between Predictions and Annotations in Intrinsically Disordered Proteins.
    Pajkos M; Erdős G; Dosztányi Z
    Biomolecules; 2023 Sep; 13(10):. PubMed ID: 37892124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between relative solvent accessible surface area (rASA) and irregular structures in protean segments (ProSs).
    Shaji D
    Bioinformation; 2016; 12(9):381-387. PubMed ID: 28250616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence conservation of protein binding segments in intrinsically disordered regions.
    Ota H; Fukuchi S
    Biochem Biophys Res Commun; 2017 Dec; 494(3-4):602-607. PubMed ID: 29066345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digging into the 3D Structure Predictions of AlphaFold2 with Low Confidence: Disorder and Beyond.
    Bruley A; Mornon JP; Duprat E; Callebaut I
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaFold2: A Role for Disordered Protein/Region Prediction?
    Wilson CJ; Choy WY; Karttunen M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface property responsible for effective interactions of protean segments: Intrinsically disordered regions that undergo disorder-to-order transitions upon binding.
    Shaji D; Amemiya T; Koike R; Ota M
    Biochem Biophys Res Commun; 2016 Sep; 478(1):123-127. PubMed ID: 27450808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins.
    Zhao B; Ghadermarzi S; Kurgan L
    Comput Struct Biotechnol J; 2023; 21():3248-3258. PubMed ID: 38213902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined prediction and design reveals the target recognition mechanism of an intrinsically disordered protein interaction domain.
    Hu X; Xu Y; Wang C; Liu Y; Zhang L; Zhang J; Wang W; Chen Q; Liu H
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305603120. PubMed ID: 37722056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Perspective on the Prospective Use of AI in Protein Structure Prediction.
    Versini R; Sritharan S; Aykac Fas B; Tubiana T; Aimeur SZ; Henri J; Erard M; Nüsse O; Andreani J; Baaden M; Fuchs P; Galochkina T; Chatzigoulas A; Cournia Z; Santuz H; Sacquin-Mora S; Taly A
    J Chem Inf Model; 2024 Jan; 64(1):26-41. PubMed ID: 38124369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AlphaFold2 models indicate that protein sequence determines both structure and dynamics.
    Guo HB; Perminov A; Bekele S; Kedziora G; Farajollahi S; Varaljay V; Hinkle K; Molinero V; Meister K; Hung C; Dennis P; Kelley-Loughnane N; Berry R
    Sci Rep; 2022 Jun; 12(1):10696. PubMed ID: 35739160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overview of AlphaFold2 and breakthroughs in overcoming its limitations.
    Wang L; Wen Z; Liu SW; Zhang L; Finley C; Lee HJ; Fan HS
    Comput Biol Med; 2024 Jun; 176():108620. PubMed ID: 38761500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions.
    Glover K; Mei Y; Sinha SC
    Biochim Biophys Acta; 2016 Oct; 1864(10):1455-63. PubMed ID: 27179590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DisBind: A database of classified functional binding sites in disordered and structured regions of intrinsically disordered proteins.
    Yu JF; Dou XH; Sha YJ; Wang CL; Wang HB; Chen YT; Zhang F; Zhou Y; Wang JH
    BMC Bioinformatics; 2017 Apr; 18(1):206. PubMed ID: 28381244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SETH predicts nuances of residue disorder from protein embeddings.
    Ilzhöfer D; Heinzinger M; Rost B
    Front Bioinform; 2022; 2():1019597. PubMed ID: 36304335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically disordered proteins/regions and insight into their biomolecular interactions.
    Chakrabarti P; Chakravarty D
    Biophys Chem; 2022 Apr; 283():106769. PubMed ID: 35139468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
    Basu S; Söderquist F; Wallner B
    J Comput Aided Mol Des; 2017 May; 31(5):453-466. PubMed ID: 28365882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NeProc predicts binding segments in intrinsically disordered regions without learning binding region sequences.
    Anbo H; Amagai H; Fukuchi S
    Biophys Physicobiol; 2020; 17():147-154. PubMed ID: 33304713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature.
    Fukuchi S; Sakamoto S; Nobe Y; Murakami SD; Amemiya T; Hosoda K; Koike R; Hiroaki H; Ota M
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D507-11. PubMed ID: 22067451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.