BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36829477)

  • 1. Exploiting Multi-Omics Profiling and Systems Biology to Investigate Functions of TOMM34.
    Poverennaya EV; Pyatnitskiy MA; Dolgalev GV; Arzumanian VA; Kiseleva OI; Kurbatov IY; Kurbatov LK; Vakhrushev IV; Romashin DD; Kim YS; Ponomarenko EA
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors.
    Trcka F; Durech M; Vankova P; Vandova V; Simoncik O; Kavan D; Vojtesek B; Muller P; Man P
    J Biol Chem; 2020 Jul; 295(27):8928-8944. PubMed ID: 32371396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex.
    Trcka F; Durech M; Man P; Hernychova L; Muller P; Vojtesek B
    J Biol Chem; 2014 Apr; 289(14):9887-901. PubMed ID: 24567332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOMM34 promotes cell proliferation, migration, and invasion of OSCC and modulates mitochondrial function.
    Huang Y; Chen Z; Chen X; Chen X; Xu M
    J Oral Pathol Med; 2023 Jan; 52(1):47-55. PubMed ID: 36367442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage.
    Muller P; Coates PJ; Nenutil R; Trcka F; Hrstka R; Chovanec J; Brychtova V; Vojtesek B
    J Ovarian Res; 2019 Mar; 12(1):30. PubMed ID: 30917858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TOMM34 expression in early invasive breast cancer: a biomarker associated with poor outcome.
    Aleskandarany MA; Negm OH; Rakha EA; Ahmed MA; Nolan CC; Ball GR; Caldas C; Green AR; Tighe PJ; Ellis IO
    Breast Cancer Res Treat; 2012 Nov; 136(2):419-27. PubMed ID: 23053644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting metformin adaptation of liver cancer cells by targeting the TOMM34/ATP5B axis.
    Jin P; Jiang J; Zhou L; Huang Z; Qin S; Chen HN; Peng L; Zhang Z; Li B; Luo M; Zhang T; Ming H; Ding N; Li L; Xie N; Gao W; Zhang W; Nice EC; Wei Y; Huang C
    EMBO Mol Med; 2022 Dec; 14(12):e16082. PubMed ID: 36321555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of TOMM34 and Its Clinicopathological Correlations in Urothelial Carcinoma of the Bladder.
    Ahmed MAH; Ali MH; Abbas HH; Elatrash GA; Foda AAM
    Pathol Oncol Res; 2020 Jan; 26(1):411-418. PubMed ID: 30382527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charting plant gene functions in the multi-omics and single-cell era.
    Depuydt T; De Rybel B; Vandepoele K
    Trends Plant Sci; 2023 Mar; 28(3):283-296. PubMed ID: 36307271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene.
    Blesa JR; Prieto-Ruiz JA; Abraham BA; Harrison BL; Hegde AA; Hernández-Yago J
    Biochem Cell Biol; 2008 Feb; 86(1):46-56. PubMed ID: 18364745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Expression of Tomm34 and Its Correlations With Clinicopathology in Oral Squamous Cell Carcinoma.
    Cai M; Tan R; Huang Y; Chen X; Kong Q; Guo K; Xu M
    Pathol Oncol Res; 2021; 27():641042. PubMed ID: 34257607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOMM34 serves as a candidate therapeutic target associated with immune cell infiltration in colon cancer.
    Li Z; Yang H; Liu J; Li L; Wang X
    Front Oncol; 2023; 13():947364. PubMed ID: 36845719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target.
    Shimokawa T; Matsushima S; Tsunoda T; Tahara H; Nakamura Y; Furukawa Y
    Int J Oncol; 2006 Aug; 29(2):381-6. PubMed ID: 16820880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RT-qPCR analysis of the tumor antigens TOMM34 and RNF43 in samples extracted from paraffin-embedded specimens of colorectal cancer.
    Matsushita N; Yamamoto S; Inoue Y; Aruga A; Yamamoto M
    Oncol Lett; 2017 Aug; 14(2):2281-2287. PubMed ID: 28789449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet.
    Winkler S; Winkler I; Figaschewski M; Tiede T; Nordheim A; Kohlbacher O
    BMC Bioinformatics; 2022 Apr; 23(1):139. PubMed ID: 35439941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy.
    Yang G; Zhou S; He H; Shen Z; Liu Y; Hu J; Wang J
    Front Pharmacol; 2022; 13():1022627. PubMed ID: 36523490
    [No Abstract]   [Full Text] [Related]  

  • 17. Multi-Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal Gonadotropin Hormone Signaling in Glioblastoma.
    Jayaram S; Gupta MK; Raju R; Gautam P; Sirdeshmukh R
    OMICS; 2016 Dec; 20(12):736-746. PubMed ID: 27930095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.