These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36829652)

  • 1. Jointly Learning Non-Cartesian
    Radhakrishna CG; Ciuciu P
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARKLING: variable-density k-space filling curves for accelerated T
    Lazarus C; Weiss P; Chauffert N; Mauconduit F; El Gueddari L; Destrieux C; Zemmoura I; Vignaud A; Ciuciu P
    Magn Reson Med; 2019 Jun; 81(6):3643-3661. PubMed ID: 30773679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection-Based cascaded U-Net model for MR image reconstruction.
    Aghabiglou A; Eksioglu EM
    Comput Methods Programs Biomed; 2021 Aug; 207():106151. PubMed ID: 34052771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. B-Spline Parameterized Joint Optimization of Reconstruction and K-Space Trajectories (BJORK) for Accelerated 2D MRI.
    Wang G; Luo T; Nielsen JF; Noll DC; Fessler JA
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2318-2330. PubMed ID: 35320096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
    Oh C; Chung JY; Han Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On retrospective k-space subsampling schemes for deep MRI reconstruction.
    Yiasemis G; Sánchez CI; Sonke JJ; Teuwen J
    Magn Reson Imaging; 2024 Apr; 107():33-46. PubMed ID: 38184093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving spreading projection algorithm for rapid k-space sampling trajectories through minimized off-resonance effects and gridding of low frequencies.
    Giliyar Radhakrishna C; Daval-Frérot G; Massire A; Vignaud A; Ciuciu P
    Magn Reson Med; 2023 Sep; 90(3):1069-1085. PubMed ID: 37213029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic optimization of three-dimensional non-Cartesian sampling trajectory.
    Wang G; Nielsen JF; Fessler JA; Noll DC
    Magn Reson Med; 2023 Aug; 90(2):417-431. PubMed ID: 37066854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a general framework for fast and feasible k-space trajectories for MRI based on projection methods.
    Sharma S; Coutino M; Chepuri SP; Leus G; Hari KVS
    Magn Reson Imaging; 2020 Oct; 72():122-134. PubMed ID: 32668272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Full 3D SPARKLING Trajectories for High-Resolution Magnetic Resonance Imaging.
    Chaithya GR; Weiss P; Daval-Frerot G; Massire A; Vignaud A; Ciuciu P
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2105-2117. PubMed ID: 35254981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data.
    Chatterjee S; Breitkopf M; Sarasaen C; Yassin H; Rose G; Nürnberger A; Speck O
    Comput Biol Med; 2022 Apr; 143():105321. PubMed ID: 35219188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
    Eo T; Shin H; Jun Y; Kim T; Hwang D
    Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressed sensing based dynamic MR image reconstruction by using 3D-total generalized variation and tensor decomposition: k-t TGV-TD.
    Zhang J; Han L; Sun J; Wang Z; Xu W; Chu Y; Xia L; Jiang M
    BMC Med Imaging; 2022 May; 22(1):101. PubMed ID: 35624425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating multi-echo chemical shift encoded water-fat MRI using model-guided deep learning.
    Li S; Shen C; Ding Z; She H; Du YP
    Magn Reson Med; 2022 Oct; 88(4):1851-1866. PubMed ID: 35649172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic MRI of the abdomen using parallel non-Cartesian convolutional recurrent neural networks.
    Zhang Y; She H; Du YP
    Magn Reson Med; 2021 Aug; 86(2):964-973. PubMed ID: 33749023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MO-D-213CD-01: Cartesian Methods for Rapid Time-Resolved MR Angiography.
    Riederer S
    Med Phys; 2012 Jun; 39(6Part21):3868-3869. PubMed ID: 28518234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction.
    Zhou B; Schlemper J; Dey N; Mohseni Salehi SS; Sheth K; Liu C; Duncan JS; Sofka M
    Med Image Anal; 2022 Oct; 81():102538. PubMed ID: 35926336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain.
    Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Jun; 20(2):190-203. PubMed ID: 32611937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.