These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36829733)

  • 1. Electrospun Poly(L-lactide-co-ε-caprolactone) Scaffold Potentiates C2C12 Myoblast Bioactivity and Acts as a Stimulus for Cell Commitment in Skeletal Muscle Myogenesis.
    Pacilio S; Costa R; Papa V; Rodia MT; Gotti C; Pagnotta G; Cenacchi G; Focarete ML
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-
    Bar JK; Kowalczyk T; Grelewski PG; Stamnitz S; Paprocka M; Lis J; Lis-Nawara A; An S; Klimczak A
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.
    Yang Z; Wu Y; Li C; Zhang T; Zou Y; Hui JH; Ge Z; Lee EH
    Tissue Eng Part A; 2012 Feb; 18(3-4):242-51. PubMed ID: 21902611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve.
    Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomed Mater Res A; 2011 Mar; 96(4):693-704. PubMed ID: 21284080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun polyhydroxybutyrate and poly(L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds.
    Daranarong D; Chan RT; Wanandy NS; Molloy R; Punyodom W; Foster LJ
    Biomed Res Int; 2014; 2014():741408. PubMed ID: 24900983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A; Zhang Z; Rouabhia M
    J Biomater Appl; 2014 Feb; 28(6):922-36. PubMed ID: 23640860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine.
    Li S; Su L; Li X; Yang L; Yang M; Zong H; Zong Q; Tang J; He H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110644. PubMed ID: 32204076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chondrogenic and ameliorated inflammatory effects of chitosan-based biomimetic scaffold loaded with icariin].
    Li H; Wang X; Shen Y; Tang H; Tang X; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Jun; 38(6):2308-2321. PubMed ID: 35786481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.
    Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW
    J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering.
    Garkhal K; Verma S; Tikoo K; Kumar N
    J Biomed Mater Res A; 2007 Sep; 82(3):747-56. PubMed ID: 17326230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D skeletal muscle fascicle engineering is improved with TGF-β1 treatment of myogenic cells and their co-culture with myofibroblasts.
    Krieger J; Park BW; Lambert CR; Malcuit C
    PeerJ; 2018; 6():e4939. PubMed ID: 30018850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture.
    Türker E; Yildiz ÜH; Arslan Yildiz A
    Int J Biol Macromol; 2019 Oct; 139():1054-1062. PubMed ID: 31404597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering.
    He X; Fu W; Feng B; Wang H; Liu Z; Yin M; Wang W; Zheng J
    J Nanosci Nanotechnol; 2013 Jun; 13(6):3818-25. PubMed ID: 23862413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.